Three-Dimensional Classification of Spinal Deformities Using Fuzzy Clustering

医学 聚类分析 人工智能 模式识别(心理学) 模糊聚类 鉴定(生物学) 脊柱畸形 数据挖掘 脊柱侧凸 机器学习 计算机科学 外科 植物 生物
作者
Luc Duong,Foued Cheriet,Hubert Labelle
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:31 (8): 923-930 被引量:71
标识
DOI:10.1097/01.brs.0000209312.62384.c1
摘要

In Brief Study Design. A prospective study of a large set of three-dimensional (3D) reconstructions of spinal deformities in adolescent idiopathic scoliosis (AIS). Objectives. To determine the value of fuzzy clustering techniques to automatically detect clinically relevant 3D curve patterns within this set of 3D spine models. Summary of Background Data. Classification is important for the assessment of AIS and has been mainly used to guide surgical treatment. Current classification systems are based on visual curve pattern identification using two-dimensional radiologic measurements but remain controversial because of their low interobserver and intraobserver reliability. A clinically useful 3D classification remains to be found. Methods. An unsupervised learning algorithm, fuzzy k-means clustering, was applied on 409 3D spine models. Analysis of data distribution using clinical parameters was performed by studying similar curve patterns, near each cluster center identified. Results. The algorithm determined that the entire sample of models could be segmented in five easily differentiated curve patterns similar to those of the Lenke and King classifications. Furthermore, a system with 12 classes made possible the identification of subpatterns of spinal deformity with true 3D components. Conclusions. Automatic and clinically relevant 3D classification of AIS is possible using an unsupervised learning algorithm. This approach can now be used to build a relevant 3D classification of AIS using appropriate key features of 3D models selected by a panel of expert spinal deformity surgeons. An unsupervised mathematical learning algorithm was used to automatically detect clinically relevant two-dimensional and three-dimensional curve patterns within a large set of three-dimensional spine reconstructions with adolescent idiopathic scoliosis and suggests that this approach can be used to build a relevant and useful three-dimensional classification system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rae sremer发布了新的文献求助10
刚刚
QJN完成签到,获得积分10
1秒前
xiaoyanyan完成签到,获得积分10
2秒前
菌菌完成签到,获得积分10
2秒前
cnd发布了新的文献求助10
2秒前
2秒前
orixero应助梁作迪采纳,获得10
3秒前
QJN发布了新的文献求助10
3秒前
善学以致用应助IAMXC采纳,获得10
3秒前
hesongwen发布了新的文献求助10
4秒前
夏远航给心照的求助进行了留言
4秒前
精悯怜明完成签到,获得积分10
5秒前
kangwer完成签到,获得积分10
5秒前
李朝富发布了新的文献求助10
6秒前
高贵香发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
10秒前
金贝壳er完成签到,获得积分10
10秒前
杜凯完成签到,获得积分10
10秒前
10秒前
包容芯完成签到 ,获得积分10
10秒前
李爱国应助zy990125采纳,获得50
11秒前
爱听歌曼文完成签到,获得积分10
11秒前
无聊的听寒完成签到 ,获得积分10
12秒前
上官若男应助周周采纳,获得10
12秒前
13秒前
13秒前
孤鸿.完成签到 ,获得积分10
14秒前
superman发布了新的文献求助10
15秒前
15秒前
wwwstt发布了新的文献求助10
15秒前
16秒前
大模型应助活泼山雁采纳,获得10
16秒前
打打应助SC采纳,获得10
17秒前
17秒前
ding应助zhouyou采纳,获得10
18秒前
18秒前
酷波er应助康利萍采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449