PEG比率
聚乙二醇
水溶液
乙二醇
生物物理学
化学
聚合物
化学工程
材料科学
高分子化学
有机化学
生物
财务
工程类
经济
作者
Jiang Wu,Chao Zhao,Weifeng Lin,Rundong Hu,Qiuming Wang,Hong Chen,Lingyan Li,Shengfu Chen,Jie Zheng
摘要
Polymer-protein interactions are crucial for determining the activity of both polymer and protein for many bio-related applications. Poly(ethylene glycol) (PEG) as a well-known antifouling material is often coated on surfaces to form highly solvated brushes, which exhibit excellent protein-repellent properties. However, unlike surface-induced antifouling effects, little is known about the intrinsic PEG-protein interactions in aqueous solution, which is an important yet neglected problem. Here, we investigate the interactions between PEG and proteins in aqueous solution using fluorescence spectroscopy, atomic force microscopy (AFM), and nuclear magnetic resonance (NMR). Two important characteristics, molecular weight of PEG and mass ratio of PEG : protein, are examined to determine the effect of each on PEG-protein interactions as well as binding characteristics between PEG and proteins. In contrast to too long and too short PEG chains, collective results have shown that PEG with optimal molecular weight (MW) is more capable of interacting with proteins, which induces the conformational change of proteins through more stable binding sites and stronger interactions with long chain PEG. Enhanced PEG-protein interactions are likely due to the change of hydrophilicity to amphiphilicity of PEG with increasing MWPEG. In contrast to almost none or weak interactions of PEG surfaces with proteins, this work provides new evidence to demonstrate the existence of interactions between PEG and proteins in aqueous solution, which is important not only for better understanding of the structure-activity relationship of PEG both in solution and on surfaces, but also for the rational design of new PEG-based materials for specific applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI