A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:40
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leyang关注了科研通微信公众号
1秒前
顾矜应助张欣宇采纳,获得10
1秒前
1秒前
王婷静完成签到,获得积分10
1秒前
1秒前
yfy_fairy完成签到,获得积分10
1秒前
神明发布了新的文献求助10
2秒前
cc发布了新的文献求助10
2秒前
Salen-Cr发布了新的文献求助10
2秒前
2秒前
科研通AI6应助灿烂千阳采纳,获得10
2秒前
泡芙应助Yiminhua采纳,获得10
2秒前
whj完成签到,获得积分20
2秒前
科研通AI6应助biu采纳,获得10
3秒前
Triumph完成签到,获得积分10
3秒前
xxx完成签到,获得积分20
3秒前
Liz1054发布了新的文献求助10
3秒前
3秒前
慕青应助可爱的海莲采纳,获得10
4秒前
蔡勇强发布了新的文献求助10
4秒前
4秒前
阿七完成签到,获得积分20
5秒前
5秒前
呼啦啦完成签到 ,获得积分10
5秒前
6秒前
大哈鱼完成签到,获得积分20
6秒前
emmm发布了新的文献求助10
6秒前
6秒前
党阳阳完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
我真找不到完成签到,获得积分0
8秒前
活力书包完成签到 ,获得积分10
8秒前
白云完成签到,获得积分10
8秒前
小二郎应助lin采纳,获得10
8秒前
小二郎应助何安采纳,获得10
8秒前
wanci应助Cindy采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836