A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:40
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张六六完成签到,获得积分10
1秒前
1秒前
Lee完成签到 ,获得积分10
3秒前
蓝天应助niko采纳,获得10
4秒前
愉快天亦发布了新的文献求助10
5秒前
zhanlan发布了新的文献求助10
6秒前
Aries完成签到,获得积分20
6秒前
勤奋橘子完成签到,获得积分10
7秒前
SciGPT应助leiyuekai采纳,获得10
7秒前
8秒前
缓慢凤凰发布了新的文献求助10
8秒前
烟花应助香菜头采纳,获得30
10秒前
量子星尘发布了新的文献求助10
11秒前
wanci应助zzh采纳,获得10
12秒前
13秒前
天天快乐应助落日出逃采纳,获得10
14秒前
赵永刚完成签到,获得积分10
14秒前
Aries关注了科研通微信公众号
14秒前
阿杰完成签到,获得积分10
15秒前
柒染完成签到 ,获得积分10
17秒前
小天完成签到 ,获得积分10
18秒前
19秒前
CR7应助李嘉图采纳,获得20
19秒前
我是老大应助曹博盛采纳,获得30
20秒前
小天关注了科研通微信公众号
21秒前
hao发布了新的文献求助10
22秒前
huangman完成签到,获得积分10
24秒前
25秒前
wz完成签到,获得积分10
27秒前
之组长了完成签到 ,获得积分10
27秒前
28秒前
苏世完成签到,获得积分10
29秒前
29秒前
光亮冬寒发布了新的文献求助10
29秒前
小高完成签到 ,获得积分10
30秒前
suozi发布了新的文献求助30
30秒前
31秒前
曹博盛发布了新的文献求助30
35秒前
别当真发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707