A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:32
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8o5V2n发布了新的文献求助10
刚刚
QJZ完成签到 ,获得积分10
刚刚
溜溜梅发布了新的文献求助10
刚刚
球球完成签到,获得积分10
1秒前
LEETHEO发布了新的文献求助10
1秒前
1秒前
1秒前
彭于晏应助75986686采纳,获得10
1秒前
2秒前
领导范儿应助WGS采纳,获得10
2秒前
2秒前
Jian完成签到 ,获得积分10
3秒前
hh完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助Mojito采纳,获得10
5秒前
5秒前
6秒前
多情山蝶发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
wsy完成签到,获得积分10
8秒前
今夜明珠色应助Liu采纳,获得30
8秒前
乐尤琉完成签到,获得积分10
9秒前
9秒前
小蘑菇应助党阳阳采纳,获得10
9秒前
10秒前
10秒前
10秒前
史克珍香完成签到 ,获得积分10
11秒前
AIDA完成签到,获得积分10
11秒前
斯文败类应助Guzaiya采纳,获得10
12秒前
gavin完成签到 ,获得积分10
13秒前
飞快的从彤完成签到 ,获得积分20
13秒前
茶米发布了新的文献求助10
14秒前
脱羰甲酸发布了新的文献求助10
15秒前
hhdegf发布了新的文献求助10
17秒前
17秒前
科目三应助ldp采纳,获得10
18秒前
研友_8o5V2n完成签到,获得积分10
19秒前
溜溜梅完成签到,获得积分10
19秒前
花生小铺主人完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594