A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:32
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Mannone发布了新的文献求助20
1秒前
1秒前
科目三应助yiyiyi采纳,获得10
1秒前
大个应助义气凝阳采纳,获得30
1秒前
Yue完成签到,获得积分10
1秒前
Ammr完成签到 ,获得积分10
1秒前
1秒前
CR完成签到 ,获得积分10
3秒前
3秒前
lay完成签到,获得积分10
4秒前
5秒前
浑天与完成签到,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
111111发布了新的文献求助10
7秒前
8秒前
宝也发布了新的文献求助10
8秒前
shijietu发布了新的文献求助10
8秒前
小王wang完成签到,获得积分10
9秒前
情怀应助Chenwang采纳,获得10
9秒前
kouxinyao发布了新的文献求助10
9秒前
4所得税d完成签到,获得积分20
10秒前
10秒前
zhang发布了新的文献求助10
10秒前
10秒前
彩色青亦发布了新的文献求助10
11秒前
美好斓发布了新的文献求助10
12秒前
kk完成签到,获得积分10
12秒前
4所得税d发布了新的文献求助10
13秒前
13秒前
xiaoyi发布了新的文献求助10
14秒前
jor666完成签到,获得积分10
14秒前
浮游应助里lilili采纳,获得10
15秒前
危机的白风完成签到,获得积分10
16秒前
lv完成签到,获得积分10
16秒前
打打应助狄芷巧采纳,获得10
16秒前
bkagyin应助学术laji采纳,获得10
16秒前
艳艳子完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586348
求助须知:如何正确求助?哪些是违规求助? 4669601
关于积分的说明 14779160
捐赠科研通 4619487
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830