亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:32
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dogshit发布了新的文献求助10
4秒前
浮游应助小龙虾仙女采纳,获得10
5秒前
xxfsx应助小龙虾仙女采纳,获得10
5秒前
浮游应助小龙虾仙女采纳,获得10
5秒前
天天快乐应助小龙虾仙女采纳,获得10
5秒前
彭于晏应助小龙虾仙女采纳,获得10
5秒前
xxfsx应助小龙虾仙女采纳,获得10
5秒前
小马甲应助小龙虾仙女采纳,获得10
6秒前
NexusExplorer应助小龙虾仙女采纳,获得10
6秒前
小二郎应助小龙虾仙女采纳,获得10
6秒前
彭于晏应助小龙虾仙女采纳,获得10
6秒前
YoungJC66发布了新的文献求助10
20秒前
24秒前
YoungJC66完成签到,获得积分10
28秒前
31秒前
今后应助海派Hi采纳,获得10
35秒前
zgsjymysmyy发布了新的文献求助10
35秒前
37秒前
量子星尘发布了新的文献求助10
39秒前
小栗子发布了新的文献求助10
43秒前
浮游应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
Jasper应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
zgsjymysmyy完成签到 ,获得积分10
54秒前
57秒前
葉鳳怡完成签到 ,获得积分10
58秒前
hb完成签到,获得积分10
1分钟前
于欣然完成签到,获得积分10
1分钟前
思源应助好主意采纳,获得10
1分钟前
汉堡包应助sxmt123456789采纳,获得10
1分钟前
车厘子完成签到 ,获得积分10
1分钟前
1分钟前
安详的夜春完成签到,获得积分10
1分钟前
Hhhhh完成签到 ,获得积分10
1分钟前
美罗培南完成签到,获得积分0
1分钟前
zzz1231123完成签到,获得积分10
1分钟前
今后应助Jsihao采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426276
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164