A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:40
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuqingyun完成签到,获得积分10
刚刚
1秒前
封闭货车完成签到 ,获得积分10
1秒前
科研通AI6应助tim采纳,获得30
1秒前
量子星尘发布了新的文献求助10
1秒前
Benji发布了新的文献求助10
1秒前
2秒前
4秒前
doctor发布了新的文献求助10
4秒前
小二郎应助Kittymiaoo采纳,获得10
5秒前
5秒前
CT发布了新的文献求助10
6秒前
7秒前
属下存在感完成签到,获得积分10
7秒前
小二郎应助yck1027采纳,获得10
7秒前
Ann发布了新的文献求助10
8秒前
怕黑的含桃完成签到,获得积分10
8秒前
龅牙苏发布了新的文献求助10
9秒前
科研通AI2S应助liuqingyun采纳,获得10
12秒前
12秒前
万能图书馆应助标致幼菱采纳,获得10
12秒前
13秒前
小小精神应助Benji采纳,获得10
13秒前
jjy完成签到,获得积分10
13秒前
T=T生物完成签到,获得积分10
13秒前
小糊涂完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
龅牙苏完成签到,获得积分10
15秒前
共享精神应助汪勇采纳,获得10
15秒前
不吃橘子完成签到,获得积分10
15秒前
Cathy完成签到,获得积分10
18秒前
充电宝应助好运莲莲莲采纳,获得10
18秒前
分隔符发布了新的文献求助10
18秒前
CT完成签到,获得积分10
19秒前
遇见完成签到,获得积分10
19秒前
春风明月发布了新的文献求助10
21秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618454
求助须知:如何正确求助?哪些是违规求助? 4703358
关于积分的说明 14922268
捐赠科研通 4757546
什么是DOI,文献DOI怎么找? 2550099
邀请新用户注册赠送积分活动 1512920
关于科研通互助平台的介绍 1474299