A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:23
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
F冯发布了新的文献求助10
刚刚
干卿完成签到,获得积分10
刚刚
刚刚
共享精神应助Zhong采纳,获得10
刚刚
le000000完成签到,获得积分10
1秒前
1秒前
爱笑向松完成签到 ,获得积分10
1秒前
华仔应助钟是一梦采纳,获得10
2秒前
2秒前
2秒前
2秒前
里已经完成签到,获得积分10
3秒前
spring完成签到 ,获得积分10
3秒前
4秒前
Kung完成签到 ,获得积分10
4秒前
动听的代曼完成签到,获得积分10
4秒前
4秒前
包容的幻梅完成签到,获得积分20
4秒前
勇敢肥猫完成签到,获得积分10
4秒前
YAN发布了新的文献求助50
4秒前
完美世界应助圈圈采纳,获得10
5秒前
时尚的蚂蚁完成签到,获得积分10
5秒前
流年完成签到 ,获得积分10
5秒前
MADKAI发布了新的文献求助10
5秒前
xunxunmimi完成签到,获得积分10
6秒前
6秒前
6秒前
刘星星发布了新的文献求助10
7秒前
CodeCraft应助科研菜鸟采纳,获得20
7秒前
zyyyyyyyyyyy完成签到,获得积分10
8秒前
9秒前
研友_8yN60L发布了新的文献求助30
9秒前
打打应助柳七采纳,获得10
10秒前
零零二完成签到 ,获得积分10
10秒前
韭菜盒子发布了新的文献求助10
11秒前
Maestro_S完成签到,获得积分0
11秒前
volzzz发布了新的文献求助10
11秒前
wgglegg完成签到,获得积分10
11秒前
科研通AI5应助小胖鱼采纳,获得10
11秒前
酷波er应助黄超采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740