A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:32
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得30
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
Ava应助xhDoc采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
常常完成签到,获得积分0
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
脂蛋白抗原应助杨老师采纳,获得10
刚刚
Orange应助后夜采纳,获得10
刚刚
刚刚
666JACS完成签到,获得积分20
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
chenhuiwan应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研豆包完成签到 ,获得积分10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
PP应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
leaolf应助科研通管家采纳,获得20
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
长毛小狮子完成签到,获得积分10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
chenhuiwan应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
路冰完成签到,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
着急的诗兰完成签到,获得积分10
3秒前
bernie1023发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475