A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:32
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐不要加班完成签到,获得积分10
刚刚
王健芬发布了新的文献求助10
1秒前
1秒前
cc发布了新的文献求助10
2秒前
2秒前
大模型应助南浔采纳,获得10
3秒前
yy发布了新的文献求助10
4秒前
QiaoFish完成签到,获得积分10
5秒前
5秒前
Sweeney发布了新的文献求助10
6秒前
唯为完成签到,获得积分10
7秒前
8秒前
9秒前
11秒前
12秒前
南斋帝完成签到,获得积分10
12秒前
12秒前
PPP完成签到,获得积分10
13秒前
今天不晚饭吃完成签到,获得积分10
13秒前
唐tang发布了新的文献求助10
13秒前
14秒前
14秒前
阳大哥发布了新的文献求助10
14秒前
Benjamin发布了新的文献求助10
15秒前
17秒前
徐炎发布了新的文献求助10
17秒前
阳光的涵菡发布了新的文献求助100
18秒前
18秒前
万能图书馆应助Sweeney采纳,获得30
18秒前
19秒前
22秒前
徐炎完成签到,获得积分10
23秒前
23秒前
wiken发布了新的文献求助30
23秒前
匪石发布了新的文献求助10
24秒前
把拼好的饭给你完成签到,获得积分10
24秒前
24秒前
搜集达人应助草人乙采纳,获得10
25秒前
Ambitious完成签到,获得积分10
25秒前
陈星完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962