亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:32
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
zsmj23完成签到 ,获得积分0
13秒前
23秒前
SciGPT应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
37秒前
白羽丫完成签到,获得积分10
38秒前
正己烷完成签到 ,获得积分10
42秒前
50秒前
50秒前
量子星尘发布了新的文献求助10
57秒前
1分钟前
wjp完成签到 ,获得积分10
1分钟前
1分钟前
所所应助Chao采纳,获得10
1分钟前
英俊的铭应助是风动哒采纳,获得10
1分钟前
1分钟前
Chao发布了新的文献求助10
1分钟前
Chao完成签到,获得积分10
1分钟前
ranj发布了新的文献求助30
1分钟前
1分钟前
曲聋五完成签到 ,获得积分0
1分钟前
帅气的安柏应助didi采纳,获得50
1分钟前
Zcl完成签到 ,获得积分20
1分钟前
天真台灯完成签到 ,获得积分10
1分钟前
Lucas应助柏月采纳,获得10
1分钟前
YYL完成签到 ,获得积分10
2分钟前
just完成签到 ,获得积分10
2分钟前
didi发布了新的文献求助10
2分钟前
打打应助谢涛采纳,获得10
2分钟前
2分钟前
路明非发布了新的文献求助10
2分钟前
2分钟前
谢涛发布了新的文献求助10
2分钟前
一念应助科研通管家采纳,获得10
2分钟前
帅气的安柏应助明理匪采纳,获得50
2分钟前
路明非完成签到,获得积分10
2分钟前
去码头整点薯条完成签到 ,获得积分10
2分钟前
2分钟前
是风动哒发布了新的文献求助10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137248
求助须知:如何正确求助?哪些是违规求助? 4337098
关于积分的说明 13511051
捐赠科研通 4175627
什么是DOI,文献DOI怎么找? 2289534
邀请新用户注册赠送积分活动 1290077
关于科研通互助平台的介绍 1231706