A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:40
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang完成签到,获得积分10
1秒前
月秋发布了新的文献求助10
1秒前
万能图书馆应助阿妤采纳,获得10
1秒前
爆米花应助顺利的白山采纳,获得10
2秒前
susu完成签到 ,获得积分10
2秒前
heisebeileimao应助111采纳,获得30
4秒前
Owen应助包容代芹采纳,获得10
5秒前
云馨完成签到,获得积分10
5秒前
幽灵发布了新的文献求助10
6秒前
专注的问寒应助黄老牛采纳,获得150
7秒前
bukeshuo发布了新的文献求助10
8秒前
agrlook完成签到,获得积分10
8秒前
小二郎应助chen采纳,获得10
8秒前
10秒前
专注的问寒应助Seona采纳,获得20
10秒前
大个应助xujingyi采纳,获得10
11秒前
biubiubiu发布了新的文献求助10
11秒前
劉劉完成签到 ,获得积分10
12秒前
xz发布了新的文献求助20
14秒前
univ完成签到,获得积分10
15秒前
笑傲江湖完成签到,获得积分10
15秒前
17秒前
kid完成签到,获得积分10
17秒前
Jasper应助123456采纳,获得30
17秒前
lc发布了新的文献求助10
17秒前
17秒前
小白完成签到 ,获得积分10
17秒前
研友_VZG7GZ应助独特的高山采纳,获得10
18秒前
18秒前
19秒前
19秒前
温暖发布了新的文献求助10
21秒前
kid发布了新的文献求助10
21秒前
Dskelf完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
111给111的求助进行了留言
24秒前
123456完成签到 ,获得积分10
24秒前
香蕉从寒完成签到,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858