亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:32
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pattis完成签到 ,获得积分10
6秒前
7秒前
香菜张发布了新的文献求助10
9秒前
赘婿应助白华苍松采纳,获得10
12秒前
32秒前
33秒前
脑洞疼应助科研进化中采纳,获得10
53秒前
1分钟前
Alisha完成签到,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
葱饼完成签到 ,获得积分10
1分钟前
活泼的手机完成签到,获得积分10
2分钟前
BowieHuang应助hamliton采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
灵均完成签到 ,获得积分10
2分钟前
白华苍松发布了新的文献求助20
2分钟前
无花果应助香菜张采纳,获得10
2分钟前
顾矜应助白华苍松采纳,获得10
3分钟前
3分钟前
wanci应助renren采纳,获得10
3分钟前
3分钟前
3分钟前
香菜张发布了新的文献求助10
3分钟前
NattyPoe完成签到,获得积分10
3分钟前
zxcvvbb1001完成签到 ,获得积分10
4分钟前
4分钟前
renren发布了新的文献求助10
4分钟前
4分钟前
Yuki完成签到 ,获得积分10
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
领导范儿应助科研通管家采纳,获得30
4分钟前
5分钟前
vbnn完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529261
求助须知:如何正确求助?哪些是违规求助? 4618429
关于积分的说明 14562611
捐赠科研通 4557443
什么是DOI,文献DOI怎么找? 2497532
邀请新用户注册赠送积分活动 1477742
关于科研通互助平台的介绍 1449173