A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images

人工智能 计算机科学 矢状面 分割 最小边界框 磁共振成像 感兴趣区域 卷积神经网络 深度学习 图像分割 计算机视觉 上下文图像分类 模式识别(心理学) 图像(数学) 放射科 医学
作者
Tijana Šušteršič,Vesna Ranković,Vladimir Milovanović,Vojin Kovačević,Lukas Rasulić,Nenad Filipović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6036-6046 被引量:27
标识
DOI:10.1109/jbhi.2022.3209585
摘要

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuanLeiZhang完成签到,获得积分10
1秒前
OKOK应助列子采纳,获得20
1秒前
熊四是誰完成签到,获得积分10
1秒前
yznfly应助开朗的心情采纳,获得30
1秒前
CipherSage应助开朗的心情采纳,获得10
1秒前
明理小霸王完成签到,获得积分20
2秒前
神明发布了新的文献求助10
3秒前
3秒前
大个应助蛋宝采纳,获得10
3秒前
3秒前
4秒前
4秒前
gyhhl完成签到,获得积分10
4秒前
凌擎宇完成签到,获得积分20
4秒前
5秒前
冷艳的火龙果完成签到,获得积分20
5秒前
Yuanyuan发布了新的文献求助10
5秒前
田様应助朴实山兰采纳,获得10
6秒前
老王发布了新的文献求助10
6秒前
糖优优完成签到,获得积分10
6秒前
谨慎的万言完成签到,获得积分10
6秒前
饱满的大碗完成签到 ,获得积分10
7秒前
风趣的胜应助温暖的以旋采纳,获得10
7秒前
周浅发布了新的文献求助10
8秒前
一心难求完成签到,获得积分10
8秒前
lara应助邹鹏采纳,获得10
8秒前
反卷队队长完成签到,获得积分10
8秒前
奋斗的珍完成签到,获得积分10
8秒前
勤恳立轩应助李佳轩采纳,获得30
9秒前
乔乔兔完成签到 ,获得积分10
9秒前
江哥完成签到,获得积分10
9秒前
10秒前
HAO完成签到,获得积分20
10秒前
勤劳的斑马完成签到,获得积分10
11秒前
华仔应助我在认真做科研采纳,获得10
11秒前
11秒前
慕青应助神明采纳,获得10
11秒前
PPP完成签到,获得积分10
12秒前
12秒前
钟若秋关注了科研通微信公众号
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149