Intra-class Contrastive Learning Improves Computer Aided Diagnosis of Breast Cancer in Mammography

计算机科学 判别式 乳腺摄影术 班级(哲学) 人工智能 任务(项目管理) 机器学习 乳腺癌 模式识别(心理学) 癌症 医学 内科学 经济 管理
作者
Kihyun You,Sang-Woo Lee,Kyuhee Jo,Eun-Kyung Park,Thijs Kooi,Hyeonseob Nam
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64 被引量:9
标识
DOI:10.1007/978-3-031-16437-8_6
摘要

Radiologists consider fine-grained characteristics of mammograms as well as patient-specific information before making the final diagnosis. Recent literature suggests that a similar strategy works for Computer Aided Diagnosis (CAD) models; multi-task learning with radiological and patient features as auxiliary classification tasks improves the model performance in breast cancer detection. Unfortunately, the additional labels that these learning paradigms require, such as patient age, breast density, and lesion type, are often unavailable due to privacy restrictions and annotation costs. In this paper, we introduce a contrastive learning framework comprising a Lesion Contrastive Loss (LCL) and a Normal Contrastive Loss (NCL), which jointly encourage models to learn subtle variations beyond class labels in a self-supervised manner. The proposed loss functions effectively utilize the multi-view property of mammograms to sample contrastive image pairs. Unlike previous multi-task learning approaches, our method improves cancer detection performance without additional annotations. Experimental results further demonstrate that the proposed losses produce discriminative intra-class features and reduce false positive rates in challenging cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
拼搏一曲发布了新的文献求助10
2秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
wushuwen发布了新的文献求助10
4秒前
5秒前
xuan完成签到,获得积分10
6秒前
完美世界应助段一帆采纳,获得10
8秒前
少敏敏完成签到,获得积分10
10秒前
may发布了新的文献求助10
10秒前
15秒前
17秒前
兜兜关注了科研通微信公众号
17秒前
wbh完成签到,获得积分10
18秒前
太牛的GGB发布了新的文献求助10
18秒前
wbh发布了新的文献求助10
20秒前
乐乐应助may采纳,获得10
20秒前
顺利的梦菲完成签到 ,获得积分10
21秒前
777完成签到 ,获得积分10
21秒前
上官若男应助忧郁盼夏采纳,获得10
22秒前
冷艳的姿发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173