Photovoltaic properties and enhancement in near-infrared light absorption capabilities of acceptor materials for organic solar cell applications: A quantum chemical perspective via DFT

光伏系统 光电子学 能量转换效率 材料科学 有机太阳能电池 太阳能电池 密度泛函理论 带隙 接受者 混合太阳能电池 纳米技术 聚合物太阳能电池 化学 物理 计算化学 凝聚态物理 生态学 生物
作者
Muhammad Ramzan Saeed Ashraf Janjua
出处
期刊:Journal of Physics and Chemistry of Solids [Elsevier]
卷期号:171: 110996-110996 被引量:76
标识
DOI:10.1016/j.jpcs.2022.110996
摘要

More than 22% power conversion efficiency (PCE) of organic solar cells (OSCs) has been reported with efficient narrow bandgap acceptor materials as the active layers. And end-capped modifications of such acceptor materials are an efficient approach for designing highly stable and efficient materials for organic solar cell applications. In this study, four new molecules ( TOS1 to TOS4 ) are designed for the active layer of organic solar cells. Density functional theory and time-dependent functional theory have been employed for the computation of various geometric, photovoltaic, optoelectronic properties of newly designed molecules. Different analyses like frontier molecular orbitals, transition density matrix, open-circuit voltage, absorption maxima, excitation and binding energies have been performed and examined with great care. Further, reorganization energy of hole and electron of novel designed molecules has been calculated and results suggested that designed systems are effective contributors for future development of organic solar cells. Overall, the outcomes of this study urge the experimentalists for the future development of highly stable and near-infrared absorbing organic solar cells. • More than 22% power conversion efficiency (PCE) has been achieved. • New molecules have been designed by end-capped modifications. • Efficient end-capped modifications in acceptor materials cause reduction in band gap. • Results of all the analyses suggested that the designed systems are efficient for organic solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XQJ发布了新的文献求助10
刚刚
慕青应助秋子david采纳,获得10
刚刚
huangtao发布了新的文献求助10
刚刚
迷人的寒风完成签到,获得积分10
1秒前
1秒前
Prandtl完成签到 ,获得积分10
1秒前
茶多酚完成签到,获得积分10
1秒前
1秒前
Yu关闭了Yu文献求助
1秒前
三颗星南极三完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
浮游应助小黑采纳,获得10
3秒前
文静的行恶完成签到,获得积分10
3秒前
大帅哥my发布了新的文献求助10
4秒前
求助人员发布了新的文献求助10
4秒前
等待的大炮完成签到,获得积分10
4秒前
5秒前
melody完成签到,获得积分10
5秒前
wuqs发布了新的文献求助10
5秒前
5秒前
情怀应助无情的宛儿采纳,获得10
5秒前
兜兜完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
拿破仑的鱼完成签到,获得积分10
7秒前
干红完成签到,获得积分10
7秒前
7秒前
赘婿应助BaiX采纳,获得10
8秒前
小二郎应助JUN'KING采纳,获得10
8秒前
Hello应助sunwending采纳,获得10
8秒前
8秒前
LaLaC完成签到,获得积分10
9秒前
Hello应助哈哈哈采纳,获得10
9秒前
Owen应助哈哈哈采纳,获得10
9秒前
迅速的代桃完成签到,获得积分10
9秒前
无极微光应助哈哈哈采纳,获得20
9秒前
Evelyn_ding完成签到,获得积分10
9秒前
chruse发布了新的文献求助10
9秒前
10秒前
JiangSir完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197