Artificial ecosystem optimization with Deep Learning Enabled Water Quality Prediction and Classification model

水质 规范化(社会学) 分类 人工神经网络 计算机科学 人工智能 质量(理念) 机器学习 深度学习 生态学 人类学 生物 认识论 哲学 社会学
作者
Nazrul Islam,Kashif Irshad
出处
期刊:Chemosphere [Elsevier]
卷期号:309: 136615-136615 被引量:12
标识
DOI:10.1016/j.chemosphere.2022.136615
摘要

The majority of what is needed to maintain life is found in the approximately 70 percent of the earth's surface that is composed of water. Water quality has been deteriorating at an alarming rate as a direct result of rapid industrialization and urbanisation, which has led to a rise in the prevalence of serious diseases. In the past, determining the quality of water was typically accomplished by employing labor-intensive, time-consuming, and statistically pricey laboratory investigations, which renders the prevalent concept of real-time monitoring meaningless. The worrisome effect of poor water quality mandates the necessity of an alternative model that is both rapid and economical to implement. There has been a lot of talk about using artificial intelligence to forecast and model water quality as a means of preventing and reducing water pollution. An artificial ecosystem optimization with Deep Learning Enabled Water Quality Prediction and Classification (AEODL-WQPC) model is presented in this paper. The primary objectives of the AEODL-WQPC model that is being given are the prediction and categorization of different levels of water quality. As a first processing step, the data normalization technique is used to the provided AEODL-WQPC model so that this goal can be achieved. In addition to this, an optimal stacked bidirectional gated recurrent unit (OSBiGRU) model is used to forecast the water quality index (WQI), and the Adam optimizer is utilised in order to fine-tune the model's parameters. AEO with enhanced Elman Neural Network (AEO-IENN) model is utilised for the categorization of water quality. This model is characterized by the fact that the AEO algorithm effectively tunes the parameters associated to the ENN model. For the purposes of the experimental validation of the AEODL-WQPC model, a benchmark water quality dataset obtained from the Kaggle repository is utilised. The research that compared several models found that the AEODL-WQPC model had superior results to more recent state of the art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
amanda完成签到 ,获得积分20
1秒前
sxd完成签到,获得积分10
1秒前
苏苏爱学习完成签到 ,获得积分10
1秒前
小杨完成签到 ,获得积分10
2秒前
金枪鱼完成签到,获得积分10
2秒前
SimonShaw完成签到,获得积分10
2秒前
田田完成签到,获得积分10
2秒前
NICKPLZ完成签到,获得积分10
3秒前
3秒前
3秒前
dm11发布了新的文献求助10
4秒前
CodeCraft应助WJ采纳,获得10
4秒前
4秒前
Ava应助suzhen采纳,获得30
4秒前
呆呆是一条鱼完成签到,获得积分10
5秒前
害羞聋五发布了新的文献求助10
6秒前
lime完成签到,获得积分10
6秒前
YXIAN完成签到,获得积分10
7秒前
zengjiqiang发布了新的文献求助10
7秒前
7秒前
星辰大海应助天天采纳,获得10
7秒前
ying完成签到,获得积分10
7秒前
guozi应助blebui采纳,获得30
8秒前
诚心代芙完成签到 ,获得积分10
8秒前
123456完成签到,获得积分10
8秒前
9秒前
chen发布了新的文献求助10
9秒前
9秒前
jun发布了新的文献求助150
9秒前
丿淘丶Tao丨完成签到,获得积分10
10秒前
玖念完成签到,获得积分10
10秒前
思源应助dm11采纳,获得10
11秒前
田様应助陈阳采纳,获得10
11秒前
zsg完成签到,获得积分10
12秒前
ssk完成签到,获得积分10
13秒前
还不如瞎写完成签到,获得积分10
14秒前
spy完成签到 ,获得积分10
14秒前
ZL完成签到 ,获得积分10
14秒前
cdm700完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526829
求助须知:如何正确求助?哪些是违规求助? 3107085
关于积分的说明 9283016
捐赠科研通 2804873
什么是DOI,文献DOI怎么找? 1539595
邀请新用户注册赠送积分活动 716634
科研通“疑难数据库(出版商)”最低求助积分说明 709597