Artificial ecosystem optimization with Deep Learning Enabled Water Quality Prediction and Classification model

水质 规范化(社会学) 分类 人工神经网络 计算机科学 人工智能 质量(理念) 机器学习 深度学习 生态学 哲学 认识论 社会学 人类学 生物
作者
Nazrul Islam,Kashif Irshad
出处
期刊:Chemosphere [Elsevier BV]
卷期号:309: 136615-136615 被引量:12
标识
DOI:10.1016/j.chemosphere.2022.136615
摘要

The majority of what is needed to maintain life is found in the approximately 70 percent of the earth's surface that is composed of water. Water quality has been deteriorating at an alarming rate as a direct result of rapid industrialization and urbanisation, which has led to a rise in the prevalence of serious diseases. In the past, determining the quality of water was typically accomplished by employing labor-intensive, time-consuming, and statistically pricey laboratory investigations, which renders the prevalent concept of real-time monitoring meaningless. The worrisome effect of poor water quality mandates the necessity of an alternative model that is both rapid and economical to implement. There has been a lot of talk about using artificial intelligence to forecast and model water quality as a means of preventing and reducing water pollution. An artificial ecosystem optimization with Deep Learning Enabled Water Quality Prediction and Classification (AEODL-WQPC) model is presented in this paper. The primary objectives of the AEODL-WQPC model that is being given are the prediction and categorization of different levels of water quality. As a first processing step, the data normalization technique is used to the provided AEODL-WQPC model so that this goal can be achieved. In addition to this, an optimal stacked bidirectional gated recurrent unit (OSBiGRU) model is used to forecast the water quality index (WQI), and the Adam optimizer is utilised in order to fine-tune the model's parameters. AEO with enhanced Elman Neural Network (AEO-IENN) model is utilised for the categorization of water quality. This model is characterized by the fact that the AEO algorithm effectively tunes the parameters associated to the ENN model. For the purposes of the experimental validation of the AEODL-WQPC model, a benchmark water quality dataset obtained from the Kaggle repository is utilised. The research that compared several models found that the AEODL-WQPC model had superior results to more recent state of the art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22222发布了新的文献求助10
刚刚
1秒前
FashionBoy应助我要看文献采纳,获得10
1秒前
符雁发布了新的文献求助10
1秒前
1秒前
胡图图发布了新的文献求助10
1秒前
苏七完成签到,获得积分10
1秒前
哈哈哈哈发布了新的文献求助10
3秒前
Akim应助高文琴采纳,获得10
3秒前
4秒前
标致小天鹅完成签到 ,获得积分10
5秒前
campus完成签到,获得积分10
5秒前
应应完成签到,获得积分10
5秒前
huangxiaoniu发布了新的文献求助10
5秒前
fcyyc发布了新的文献求助10
6秒前
7秒前
8秒前
张张完成签到,获得积分20
10秒前
漪涙发布了新的文献求助10
11秒前
罗小罗同学完成签到,获得积分10
11秒前
搞怪白秋完成签到 ,获得积分10
12秒前
yana完成签到,获得积分10
13秒前
HK完成签到,获得积分10
13秒前
谢光菲完成签到,获得积分10
14秒前
ice完成签到 ,获得积分10
14秒前
超级的金毛完成签到,获得积分10
14秒前
顾矜应助雪白巨人采纳,获得10
15秒前
白色蒲公英完成签到,获得积分10
15秒前
CodeCraft应助甜蜜屁池采纳,获得10
15秒前
cgl155410完成签到,获得积分10
16秒前
宇文宛菡完成签到 ,获得积分10
16秒前
16秒前
李爱国应助康康采纳,获得10
16秒前
16秒前
大个应助想好好搞事业采纳,获得10
20秒前
Echo完成签到,获得积分10
20秒前
21秒前
zyj发布了新的文献求助10
21秒前
超级的一斩完成签到 ,获得积分10
22秒前
lin发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547