Product envelope spectrum optimization-gram: An enhanced envelope analysis for rolling bearing fault diagnosis

包络线(雷达) 振动 方位(导航) 工程类 计算机科学 电子工程 声学 算法 物理 人工智能 电信 雷达
作者
Bingyan Chen,Weihua Zhang,James Xi Gu,Dongli Song,Yao Cheng,Zewen Zhou,Fengshou Gu,Andrew D. Ball
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:193: 110270-110270 被引量:61
标识
DOI:10.1016/j.ymssp.2023.110270
摘要

The vibration signal of a faulty rolling bearing exhibits typical non-stationarity – often in the form of cyclostationarity. The spectrum tools often used to characterize cyclostationarity mainly include envelope spectrum, squared envelope spectrum and log-envelope spectrum. In this paper, new detection methods of cyclostationarity are developed for obtaining a larger family of envelope analysis and their effectiveness in rolling bearing fault diagnosis is evaluated rigorously. Firstly, based on the simplified Box-Cox transformation, the generalized envelope signals are constructed from the analytic signal for demodulation purposes, and then a spectrum family named generalized envelope spectra (GESs) is proposed to reveal cyclostationarity. Especially, GESs with different transformation parameters exhibit different performance advantages against the random impulse noise and Gaussian background noise which are commonly present in rolling bearing vibration signals. Subsequently, a novel spectrum tool that combines the performance advantages of different GESs, called product envelope spectrum (PES), is developed to strengthen the capability to detect cyclostationarity. Finally, an enhanced envelope analysis named Product Envelope Spectral Optimization-gram (PESOgram) is proposed to improve the accuracy and robustness of PES for rolling bearing fault diagnosis in the presence of different fault-unrelated interference noises. The performance of the PESOgram method is validated on numerically generated signal and experimental signals collected from two railway axle bearing test rigs and compared with several state-of-the-art envelope analysis methods. The results demonstrate the effectiveness of the proposed method for fault diagnosis of rolling bearings and its advantages over other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助易安采纳,获得10
1秒前
1秒前
一一发布了新的文献求助10
1秒前
2秒前
Muller完成签到,获得积分10
2秒前
经法发布了新的文献求助10
3秒前
谦让的忘幽完成签到,获得积分20
3秒前
和谐小南完成签到,获得积分10
3秒前
小jiojio的猪完成签到,获得积分10
3秒前
小匹夫完成签到,获得积分10
4秒前
赤墨完成签到,获得积分10
4秒前
4秒前
5秒前
狮子沟核聚变骡子完成签到 ,获得积分10
5秒前
5秒前
传奇3应助乔治韦斯莱采纳,获得30
5秒前
5秒前
6秒前
于某人完成签到,获得积分10
6秒前
小陈要发SCI完成签到 ,获得积分10
6秒前
cdercder应助尹天扬采纳,获得20
6秒前
称心铭完成签到 ,获得积分10
7秒前
cjh258819完成签到,获得积分10
8秒前
8秒前
xl完成签到 ,获得积分10
9秒前
9秒前
9秒前
liu完成签到 ,获得积分10
9秒前
9秒前
wdlc完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
hhh发布了新的文献求助30
12秒前
Romina完成签到,获得积分10
12秒前
你不知道发布了新的文献求助30
13秒前
困_zzzzzz完成签到 ,获得积分10
13秒前
科目三应助猪猪hero采纳,获得10
13秒前
调研昵称发布了新的文献求助10
14秒前
喜悦中道应助cjh258819采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678