The Best of Both Worlds: Combining Randomized Controlled Trials with Structural Modeling

反事实思维 可靠性 利用 计算机科学 估计 结构估计 点(几何) 管理科学 计量经济模型 经济 计量经济学 数学 政治学 认识论 哲学 几何学 计算机安全 管理 法学
作者
Petra Todd,Kenneth I. Wolpin
出处
期刊:Journal of Economic Literature [American Economic Association]
卷期号:61 (1): 41-85 被引量:17
标识
DOI:10.1257/jel.20211652
摘要

There is a long-standing debate about the extent to which economic theory should inform econometric modeling and estimation. This debate is particularly evident in the program/policy evaluation literature, where reduced-form (experimental or quasi-experimental) and structural modeling approaches are often viewed as rival methodologies. Reduced-form proponents criticize the assumptions invoked in structural applications. Structural modeling advocates point to the limitations of reduced-form approaches in not being able to inform about program impacts prior to implementation or about the costs and benefits of program designs that deviate from the one that was implemented. In this paper, we argue that there is a new emerging view of a natural synergy between these two approaches, that they can be melded to exploit the advantages and ameliorate the disadvantages of each. We provide examples of how data from randomized controlled trials (RCTs), the exemplar of reduced form practitioners, can be used to enhance the credibility of structural estimation. We also illustrate how the structural approach complements experimental analyses by enabling evaluation of counterfactual policies/programs. Lastly, we survey many recent studies that combine these methodologies in various ways across different subfields within economics. (JEL C21, C52, C53, H24, I38, J13, R38)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助悦耳冬萱采纳,获得10
2秒前
拓跋天川完成签到,获得积分10
3秒前
4秒前
orixero应助Hiihaa采纳,获得20
5秒前
7秒前
8秒前
寒冷的凝旋完成签到,获得积分10
9秒前
9秒前
110o发布了新的文献求助10
10秒前
tongtong发布了新的文献求助10
10秒前
廉向珊完成签到 ,获得积分10
11秒前
夜无霜666完成签到,获得积分10
11秒前
zooro发布了新的文献求助10
12秒前
因子发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
大模型应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
Andy_Cheung应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
16秒前
希望天下0贩的0应助110o采纳,获得10
18秒前
19秒前
阿彤发布了新的文献求助30
19秒前
大糖糕僧发布了新的文献求助10
19秒前
19秒前
每天都在找完成签到,获得积分10
19秒前
21秒前
开心的海燕给开心的海燕的求助进行了留言
21秒前
领导范儿应助tongtong采纳,获得10
22秒前
zz0429发布了新的文献求助10
22秒前
qphys完成签到,获得积分10
22秒前
雷欧源完成签到,获得积分10
22秒前
22秒前
compchem发布了新的文献求助10
23秒前
接受所有小饼干完成签到,获得积分10
24秒前
高分求助中
All the Birds of the World 3000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3719479
求助须知:如何正确求助?哪些是违规求助? 3265902
关于积分的说明 9941289
捐赠科研通 2979639
什么是DOI,文献DOI怎么找? 1634218
邀请新用户注册赠送积分活动 775671
科研通“疑难数据库(出版商)”最低求助积分说明 745765