The Best of Both Worlds: Combining Randomized Controlled Trials with Structural Modeling

反事实思维 可靠性 利用 计算机科学 估计 结构估计 点(几何) 管理科学 计量经济模型 经济 计量经济学 数学 政治学 认识论 哲学 管理 法学 计算机安全 几何学
作者
Petra Todd,Kenneth I. Wolpin
出处
期刊:Journal of Economic Literature [American Economic Association]
卷期号:61 (1): 41-85 被引量:17
标识
DOI:10.1257/jel.20211652
摘要

There is a long-standing debate about the extent to which economic theory should inform econometric modeling and estimation. This debate is particularly evident in the program/policy evaluation literature, where reduced-form (experimental or quasi-experimental) and structural modeling approaches are often viewed as rival methodologies. Reduced-form proponents criticize the assumptions invoked in structural applications. Structural modeling advocates point to the limitations of reduced-form approaches in not being able to inform about program impacts prior to implementation or about the costs and benefits of program designs that deviate from the one that was implemented. In this paper, we argue that there is a new emerging view of a natural synergy between these two approaches, that they can be melded to exploit the advantages and ameliorate the disadvantages of each. We provide examples of how data from randomized controlled trials (RCTs), the exemplar of reduced form practitioners, can be used to enhance the credibility of structural estimation. We also illustrate how the structural approach complements experimental analyses by enabling evaluation of counterfactual policies/programs. Lastly, we survey many recent studies that combine these methodologies in various ways across different subfields within economics. (JEL C21, C52, C53, H24, I38, J13, R38)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理大树发布了新的文献求助10
刚刚
王木木完成签到,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Teletubbies应助科研通管家采纳,获得30
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Teletubbies应助科研通管家采纳,获得30
1秒前
默默的完成签到 ,获得积分10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
化学学渣完成签到,获得积分20
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
陌上尘发布了新的文献求助10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
尉迟希望应助科研通管家采纳,获得10
2秒前
大模型应助冷静的石头采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
尉迟希望应助科研通管家采纳,获得10
2秒前
观潮应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733856
求助须知:如何正确求助?哪些是违规求助? 5351379
关于积分的说明 15325402
捐赠科研通 4878818
什么是DOI,文献DOI怎么找? 2621454
邀请新用户注册赠送积分活动 1570535
关于科研通互助平台的介绍 1527514