The Fermentation Degree Prediction Model for Tieguanyin Oolong Tea Based on Visual and Sensing Technologies

发酵 学位(音乐) 食品科学 生物系统 化学 数学 生物 物理 声学
作者
Yuyan Huang,Jian Zhao,C. Zheng,Chuanhui Li,Tao Wang,Li Xiao,Yongkuai Chen
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:14 (6): 983-983
标识
DOI:10.3390/foods14060983
摘要

The fermentation of oolong tea is a critical process that determines its quality and flavor. Current fermentation control relies on tea makers’ sensory experience, which is labor-intensive and time-consuming. In this study, using Tieguanyin oolong tea as the research object, features including the tea water loss rate, aroma, image color, and texture were obtained using weight sensors, a tin oxide-type gas sensor, and a visual acquisition system. Support vector regression (SVR), random forest (RF) machine learning, and long short-term memory (LSTM) deep learning algorithms were employed to establish models for assessing the fermentation degree based on both single features and fused multi-source features, respectively. The results showed that in the test set of the fermentation degree models based on single features, the mean absolute error (MAE) ranged from 4.537 to 6.732, the root mean square error (RMSE) ranged from 5.980 to 9.416, and the coefficient of determination (R2) values varied between 0.898 and 0.959. In contrast, the data fusion models demonstrated superior performance, with the MAE reduced to 2.232–2.783, the RMSE reduced to 2.693–3.969, and R2 increased to 0.982–0.991, confirming that feature fusion enhanced characterization accuracy. Finally, the Sparrow Search Algorithm (SSA) was applied to optimize the data fusion models. After optimization, the models exhibited a MAE ranging from 1.703 to 2.078, a RMSE from 2.258 to 3.230, and R2 values between 0.988 and 0.994 on the test set. The application of the SSA further enhanced model accuracy, with the Fusion-SSA-LSTM model demonstrating the best performance. The research results enable online real-time monitoring of the fermentation degree of Tieguanyin oolong tea, which contributes to the automated production of Tieguanyin oolong tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
刚刚
samvega应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
摸鱼仙人完成签到,获得积分10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
shYnEss发布了新的文献求助10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
www完成签到 ,获得积分20
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
活泼饼干发布了新的文献求助10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
cavendipeng发布了新的文献求助10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
Bebeans应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
冷艳元柏完成签到,获得积分20
2秒前
2秒前
霸气的惜寒完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
科目三应助勤劳的星月采纳,获得10
4秒前
lcw发布了新的文献求助10
4秒前
彭于晏应助hahhhhhh2采纳,获得10
4秒前
非234完成签到,获得积分20
5秒前
李健的小迷弟应助君子兰采纳,获得10
6秒前
微微发布了新的文献求助10
6秒前
jackyale完成签到,获得积分10
6秒前
hy1234完成签到 ,获得积分10
6秒前
英俊的铭应助long采纳,获得10
6秒前
小虎同学完成签到,获得积分10
7秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702264
求助须知:如何正确求助?哪些是违规求助? 3252186
关于积分的说明 9878125
捐赠科研通 2964260
什么是DOI,文献DOI怎么找? 1625582
邀请新用户注册赠送积分活动 770080
科研通“疑难数据库(出版商)”最低求助积分说明 742745