作者
Yuyan Huang,Jian Zhao,C. Zheng,Chuanhui Li,Tao Wang,Li Xiao,Yongkuai Chen
摘要
The fermentation of oolong tea is a critical process that determines its quality and flavor. Current fermentation control relies on tea makers’ sensory experience, which is labor-intensive and time-consuming. In this study, using Tieguanyin oolong tea as the research object, features including the tea water loss rate, aroma, image color, and texture were obtained using weight sensors, a tin oxide-type gas sensor, and a visual acquisition system. Support vector regression (SVR), random forest (RF) machine learning, and long short-term memory (LSTM) deep learning algorithms were employed to establish models for assessing the fermentation degree based on both single features and fused multi-source features, respectively. The results showed that in the test set of the fermentation degree models based on single features, the mean absolute error (MAE) ranged from 4.537 to 6.732, the root mean square error (RMSE) ranged from 5.980 to 9.416, and the coefficient of determination (R2) values varied between 0.898 and 0.959. In contrast, the data fusion models demonstrated superior performance, with the MAE reduced to 2.232–2.783, the RMSE reduced to 2.693–3.969, and R2 increased to 0.982–0.991, confirming that feature fusion enhanced characterization accuracy. Finally, the Sparrow Search Algorithm (SSA) was applied to optimize the data fusion models. After optimization, the models exhibited a MAE ranging from 1.703 to 2.078, a RMSE from 2.258 to 3.230, and R2 values between 0.988 and 0.994 on the test set. The application of the SSA further enhanced model accuracy, with the Fusion-SSA-LSTM model demonstrating the best performance. The research results enable online real-time monitoring of the fermentation degree of Tieguanyin oolong tea, which contributes to the automated production of Tieguanyin oolong tea.