Association of obesity-related indices with rapid kidney function decline and chronic kidney disease, a study from a large longitudinal cohort in China

医学 体质指数 内科学 腰围 体型指数 逻辑回归 肥胖 肾脏疾病 接收机工作特性 肾功能 队列 队列研究 腰高比 肥胖的分类 脂肪团
作者
Linshan Yang,Shengyu Huang,Shuyue Sheng,Xiaobin Liu,Shaolin Ma,Feng Zhu
出处
期刊:Obesity Facts [Karger Publishers]
卷期号:: 1-27
标识
DOI:10.1159/000545356
摘要

Introduction: Obesity has been established as a significant risk factor for rapid kidney function decline (RKFD) and chronic kidney disease (CKD). However, the comparative prognostic value of various obesity-related indices in predicting RKFD and CKD remains inadequately elucidated. The objective of this study was to explore the correlations between ten obesity-related indices: body mass index (BMI), Chinese visceral adiposity index (CVAI), waist-to-height ratio (WHtR), visceral adiposity index (VAI), body roundness index (BRI), a body shape index (ABSI), lipid accumulation product (LAP), waist triglyceride index (WTI), relative fat mass (RFM), and conicity index (C-index), and RKFD and CKD. Methods: This retrospective longitudinal cohort study leveraged data sourced from the China Health and Retirement Longitudinal Study (CHARLS). Multivariate logistic regression models with covariate adjustment were employed to assess independent associations between obesity-related indices and clinical outcomes. Restricted cubic spline (RCS) regression analyses were performed to characterize potential nonlinear relationships. Predictive performance was quantified through receiver operating characteristic (ROC) curve analysis, with area under the curve (AUC) comparisons. Results: A total of 1,620 participants were enrolled in this study. Among them, 109 participants developed RKFD, and 60 progressed to CKD. Adjusted logistic regression revealed significant positive associations between CVAI, VAI, LAP, WTI and RKFD risk, while BRI and C-index demonstrated per standard deviation (SD) increases associated with CKD progression. RCS curve analysis demonstrated that CVAI and LAP exhibited a nonlinear relationship with the risk of RKFD, while VAI and WTI had a linear relationship. Moreover, the C-index had a nonlinear relationship with the risk of CKD, whereas BRI had a linear relationship. ROC analysis revealed WTI as the superior RKFD predictor and ABSI as the optimal CKD progression indicator among the evaluated obesity-related indices. Conclusion: This study comprehensively investigated the associations between ten obesity-related indices and both RKFD and CKD. Our findings indicated that CVAI, VAI, LAP, and WTI were associated with RKFD, with WTI exhibiting the highest predictive value. Furthermore, BRI and C-index were associated with CKD, with ABSI demonstrating the highest predictive value for the progression to CKD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶茶的后来完成签到,获得积分10
1秒前
残落人间发布了新的文献求助10
1秒前
注水萝卜完成签到 ,获得积分10
1秒前
苹果路人完成签到,获得积分10
2秒前
summer完成签到 ,获得积分10
2秒前
科研小辣机完成签到 ,获得积分10
2秒前
alna完成签到,获得积分10
3秒前
汉堡包应助平淡雅霜采纳,获得10
5秒前
小鹿呀完成签到,获得积分10
6秒前
xjy1521完成签到,获得积分10
7秒前
8秒前
zhang完成签到,获得积分10
10秒前
考啥都上岸完成签到,获得积分10
10秒前
小富婆完成签到 ,获得积分10
11秒前
上好佳完成签到,获得积分10
11秒前
12秒前
DAVE应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
cdercder应助科研通管家采纳,获得10
12秒前
mfy0068完成签到,获得积分10
12秒前
残落人间完成签到,获得积分10
13秒前
快乐战神没烦恼完成签到,获得积分10
16秒前
沐沐1003完成签到,获得积分10
17秒前
18秒前
平淡雅霜发布了新的文献求助10
18秒前
平常的毛豆应助海带采纳,获得10
19秒前
21秒前
22秒前
orchid完成签到,获得积分10
22秒前
慕青应助melenda采纳,获得10
23秒前
墩墩发布了新的文献求助10
28秒前
草原狼完成签到,获得积分10
28秒前
王正浩完成签到 ,获得积分10
30秒前
Cherry完成签到,获得积分10
30秒前
时月完成签到 ,获得积分10
30秒前
无情飞风发布了新的文献求助10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020421
捐赠科研通 2997407
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749656