Integrating metabolic expenditure information from wearable fitness sensors into an AI-augmented automated insulin delivery system: a randomised clinical trial

可穿戴计算机 医学 人口 随机对照试验 交叉研究 物理疗法 2型糖尿病 糖尿病 会话(web分析) 计算机科学 内科学 内分泌学 替代医学 环境卫生 病理 嵌入式系统 安慰剂 万维网
作者
Peter G. Jacobs,Navid Resalat,Wade Hilts,Gary P. Young,Joseph Leitschuh,Joseph Pinsonault,Joseph El Youssef,Deborah Branigan,Virginia Gabo,Jae H Eom,Katrina Ramsey,Robert Dodier,Clara Mosquera-Lopez,Leah M. Wilson,Jessica R. Castle
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (9): e607-e617 被引量:2
标识
DOI:10.1016/s2589-7500(23)00112-7
摘要

Exercise can rapidly drop glucose in people with type 1 diabetes. Ubiquitous wearable fitness sensors are not integrated into automated insulin delivery (AID) systems. We hypothesised that an AID can automate insulin adjustments using real-time wearable fitness data to reduce hypoglycaemia during exercise and free-living conditions compared with an AID not automating use of fitness data.Our study population comprised of individuals (aged 21-50 years) with type 1 diabetes from from the Harold Schnitzer Diabetes Health Center clinic at Oregon Health and Science University, OR, USA, who were enrolled into a 76 h single-centre, two-arm randomised (4-block randomisation), non-blinded crossover study to use (1) an AID that detects exercise, prompts the user, and shuts off insulin during exercise using an exercise-aware adaptive proportional derivative (exAPD) algorithm or (2) an AID that automates insulin adjustments using fitness data in real-time through an exercise-aware model predictive control (exMPC) algorithm. Both algorithms ran on iPancreas comprising commercial glucose sensors, insulin pumps, and smartwatches. Participants executed 1 week run-in on usual therapy followed by exAPD or exMPC for one 12 h primary in-clinic session involving meals, exercise, and activities of daily living, and 2 free-living out-patient days. Primary outcome was time below range (<3·9 mmol/L) during the primary in-clinic session. Secondary outcome measures included mean glucose and time in range (3·9-10 mmol/L). This trial is registered with ClinicalTrials.gov, NCT04771403.Between April 13, 2021, and Oct 3, 2022, 27 participants (18 females) were enrolled into the study. There was no significant difference between exMPC (n=24) versus exAPD (n=22) in time below range (mean [SD] 1·3% [2·9] vs 2·5% [7·0]) or time in range (63·2% [23·9] vs 59·4% [23·1]) during the primary in-clinic session. In the 2 h period after start of in-clinic exercise, exMPC had significantly lower mean glucose (7·3 [1·6] vs 8·0 [1·7] mmol/L, p=0·023) and comparable time below range (1·4% [4·2] vs 4·9% [14·4]). Across the 76 h study, both algorithms achieved clinical time in range targets (71·2% [16] and 75·5% [11]) and time below range (1·0% [1·2] and 1·3% [2·2]), significantly lower than run-in period (2·4% [2·4], p=0·0004 vs exMPC; p=0·012 vs exAPD). No adverse events occurred.AIDs can integrate exercise data from smartwatches to inform insulin dosing and limit hypoglycaemia while improving glucose outcomes. Future AID systems that integrate exercise metrics from wearable fitness sensors may help people living with type 1 diabetes exercise safely by limiting hypoglycaemia.JDRF Foundation and the Leona M and Harry B Helmsley Charitable Trust, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈嘻嘻嘻嘻完成签到,获得积分10
刚刚
1秒前
大卫在分享应助明杰采纳,获得10
2秒前
李健应助呼呼哈嘿采纳,获得10
3秒前
Ava应助匆匆采纳,获得10
3秒前
黄垚发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
5秒前
wyc发布了新的文献求助10
6秒前
6秒前
6秒前
可爱的函函应助笨笨垣采纳,获得10
6秒前
乐乐应助半烟采纳,获得10
8秒前
9秒前
黄垚完成签到,获得积分10
9秒前
lala发布了新的文献求助10
9秒前
10秒前
han发布了新的文献求助10
10秒前
风禾发布了新的文献求助10
10秒前
冻冻也发布了新的文献求助10
10秒前
万能图书馆应助文小杰采纳,获得10
12秒前
12秒前
998877剑指发布了新的文献求助10
12秒前
斯文败类应助斯文明杰采纳,获得10
13秒前
xy完成签到 ,获得积分10
13秒前
14秒前
wyc完成签到,获得积分20
16秒前
17秒前
keyantang完成签到,获得积分10
18秒前
桃桃子发布了新的文献求助10
18秒前
19秒前
张子扬发布了新的文献求助10
22秒前
啦啦啦完成签到,获得积分10
23秒前
桃桃子完成签到,获得积分10
24秒前
上官若男应助momo采纳,获得10
26秒前
27秒前
27秒前
橘朵方差完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706