Predicting minimum miscible pressure in pure CO2 flooding using machine learning: Method comparison and sensitivity analysis

Python(编程语言) 计算机科学 可靠性(半导体) 提高采收率 均方误差 机器学习 决定系数 人工智能 数据挖掘 数学 石油工程 统计 热力学 工程类 功率(物理) 物理 操作系统
作者
Harith F. Al-Khafaji,Qingbang Meng,Wakeel Hussain,Rudha Khudhair Mohammed,Fayez Harash,Salah Alshareef AlFakey
出处
期刊:Fuel [Elsevier]
卷期号:354: 129263-129263 被引量:13
标识
DOI:10.1016/j.fuel.2023.129263
摘要

CO2 injection for enhanced oil recovery (EOR) is widely recognized as an efficient technique for carbon capture, utilization, and storage (CCUS). This operation has a significant impact on various technical parameters, emphasizing the need to carefully consider and select the optimum approach. Among these factors, the minimum miscible pressure (MMP) plays a crucial role in determining the effectiveness and performance of CO2 injection. Therefore, this study aims to assess the reliability of machine learning (ML) in predicting the MMP of pure CO2 and examine the influence of different independent parameters. To achieve this, five ML methods were employed to predict the pure CO2 MMP, and the results were compared to statistical evaluations based on empirical correlations. In addition, three types of data with different functional input parameters were used in this research. Two types of data were obtained from existing literature, while the third category was collected from the thesis and PVT reports for specific Iraqi oil fields. The ML models were constructed by splitting the dataset into 20% for testing and 80% for training using Python programming. The significance of this study lies in its ability to identify the most efficient approach for forecasting MMP. The results of this work revealed that the K-nearest neighbors (KNN) model indicated the best statistical evaluation among the ML learning algorithms for two types of data (2) and (3) in predicting the MMP for pure CO2 flooding. This was evidenced by the lowest mean square error and the highest coefficient of determination. Additionally, the findings indicated that the support vector regression (SVR) method is an effective technique for smaller datasets. Moreover, the sensitivity analysis and assessment of the relative impacts of various input parameters revealed that the prediction of MMP is most sensitive to the composition of the injected gas and temperature, accounting for 46% and 28.5% of the variation, respectively. Finally, the presented ML models indicate exceptional accuracy, speed, adaptability in handling diverse conditions, and cost-effectiveness when compared to conventional approaches. These results verify the ability of ML models to provide high-quality predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
111完成签到,获得积分20
3秒前
3秒前
5秒前
5秒前
TT2022发布了新的文献求助10
6秒前
Lucas应助Euphoria采纳,获得10
6秒前
6秒前
Frank给史道夫的求助进行了留言
7秒前
划水完成签到,获得积分20
8秒前
8秒前
111发布了新的文献求助10
8秒前
南敏株完成签到,获得积分10
8秒前
smm完成签到,获得积分10
10秒前
10秒前
南敏株发布了新的文献求助10
10秒前
zcj发布了新的文献求助10
12秒前
雨琴完成签到,获得积分10
13秒前
14秒前
fdxs完成签到,获得积分20
15秒前
16秒前
skj你考六级完成签到,获得积分10
16秒前
17秒前
18秒前
Amor发布了新的文献求助10
19秒前
负责念梦发布了新的文献求助10
22秒前
称心茹嫣发布了新的文献求助10
23秒前
25秒前
忐忑的冰淇淋完成签到,获得积分10
25秒前
27秒前
0029发布了新的文献求助10
27秒前
29秒前
30秒前
31秒前
bkagyin应助称心茹嫣采纳,获得10
33秒前
33秒前
烟花应助yqcj455采纳,获得10
33秒前
35秒前
老薛完成签到,获得积分10
35秒前
砚草难书发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919