亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey

计算机科学 深度学习 图形 数据科学 时态数据库 人工智能 机器学习 城市计算 数据挖掘 理论计算机科学
作者
Guangyin Jin,Yuxuan Liang,Yuchen Fang,Zezhi Shao,Jincai Huang,Junbo Zhang,Yu Zheng
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (10): 5388-5408 被引量:301
标识
DOI:10.1109/tkde.2023.3333824
摘要

With recent advances in sensing technologies, a myriad of spatio-temporal data has been generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal data is an important yet demanding aspect of urban computing, which can enhance intelligent management decisions in various fields, including transportation, environment, climate, public safety, healthcare, and others. Traditional statistical and deep learning methods struggle to capture complex correlations in urban spatio-temporal data. To this end, Spatio-Temporal Graph Neural Networks (STGNN) have been proposed, achieving great promise in recent years. STGNNs enable the extraction of complex spatio-temporal dependencies by integrating graph neural networks (GNNs) and various temporal learning methods. In this manuscript, we provide a comprehensive survey on recent progress on STGNN technologies for predictive learning in urban computing. Firstly, we provide a brief introduction to the construction methods of spatio-temporal graph data and the prevalent deep-learning architectures used in STGNNs. We then sort out the primary application domains and specific predictive learning tasks based on existing literature. Afterward, we scrutinize the design of STGNNs and their combination with some advanced technologies in recent years. Finally, we conclude the limitations of existing research and suggest potential directions for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
隐形的幻梅完成签到,获得积分10
5秒前
ll发布了新的文献求助10
7秒前
15秒前
丁一发布了新的文献求助10
22秒前
22秒前
24秒前
丁一完成签到,获得积分10
28秒前
飞鞚发布了新的文献求助10
28秒前
TRISTE发布了新的文献求助20
29秒前
huxuehong完成签到 ,获得积分10
32秒前
阿泽完成签到,获得积分10
33秒前
Ariel完成签到 ,获得积分10
37秒前
40秒前
慕青应助TRISTE采纳,获得10
42秒前
巴音布鲁克完成签到 ,获得积分10
45秒前
宁过儿发布了新的文献求助20
46秒前
jinyue完成签到 ,获得积分10
48秒前
58秒前
59秒前
allover完成签到,获得积分10
1分钟前
TRISTE发布了新的文献求助10
1分钟前
开朗的千雁完成签到 ,获得积分10
1分钟前
Guts发布了新的文献求助50
1分钟前
无极微光应助TRISTE采纳,获得20
1分钟前
meow完成签到 ,获得积分10
1分钟前
Jbiolover完成签到,获得积分10
1分钟前
1分钟前
1分钟前
pay发布了新的文献求助10
1分钟前
LYL完成签到,获得积分10
1分钟前
Hello应助万人如海一身藏采纳,获得10
1分钟前
1分钟前
cxin发布了新的文献求助10
1分钟前
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
VirgoYn完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754802
求助须知:如何正确求助?哪些是违规求助? 5489736
关于积分的说明 15380642
捐赠科研通 4893273
什么是DOI,文献DOI怎么找? 2631842
邀请新用户注册赠送积分活动 1579771
关于科研通互助平台的介绍 1535564