Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey

计算机科学 深度学习 图形 数据科学 时态数据库 人工智能 机器学习 城市计算 数据挖掘 理论计算机科学
作者
Guangyin Jin,Yuxuan Liang,Yuchen Fang,Zezhi Shao,Jincai Huang,Junbo Zhang,Yu Zheng
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-20 被引量:59
标识
DOI:10.1109/tkde.2023.3333824
摘要

With recent advances in sensing technologies, a myriad of spatio-temporal data has been generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal data is an important yet demanding aspect of urban computing, which can enhance intelligent management decisions in various fields, including transportation, environment, climate, public safety, healthcare, and others. Traditional statistical and deep learning methods struggle to capture complex correlations in urban spatio-temporal data. To this end, Spatio-Temporal Graph Neural Networks (STGNN) have been proposed, achieving great promise in recent years. STGNNs enable the extraction of complex spatio-temporal dependencies by integrating graph neural networks (GNNs) and various temporal learning methods. In this manuscript, we provide a comprehensive survey on recent progress on STGNN technologies for predictive learning in urban computing. Firstly, we provide a brief introduction to the construction methods of spatio-temporal graph data and the prevalent deep-learning architectures used in STGNNs. We then sort out the primary application domains and specific predictive learning tasks based on existing literature. Afterward, we scrutinize the design of STGNNs and their combination with some advanced technologies in recent years. Finally, we conclude the limitations of existing research and suggest potential directions for future work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Noldor应助下文献采纳,获得10
3秒前
小洪俊熙完成签到,获得积分10
3秒前
5秒前
安好发布了新的文献求助10
6秒前
希望天下0贩的0应助xiemeili采纳,获得10
8秒前
领导范儿应助自由秋荷采纳,获得10
8秒前
ppp发布了新的文献求助30
9秒前
jiejie完成签到,获得积分20
10秒前
MOndayMU完成签到 ,获得积分10
10秒前
莹66完成签到 ,获得积分10
11秒前
11秒前
科研通AI2S应助happy2016采纳,获得10
12秒前
共享精神应助姝飞糊涂采纳,获得10
13秒前
ffff应助称心豁采纳,获得10
13秒前
文献狗完成签到,获得积分20
13秒前
wusanlinshi完成签到,获得积分10
14秒前
14秒前
14秒前
研友_VZG7GZ应助勿忘9451采纳,获得10
14秒前
15秒前
15秒前
16秒前
和光同尘发布了新的文献求助10
17秒前
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
18秒前
英姑应助科研通管家采纳,获得10
18秒前
Lemenchichi发布了新的文献求助10
19秒前
YIN222完成签到,获得积分10
19秒前
啊甘呢完成签到 ,获得积分10
19秒前
部落格123发布了新的文献求助10
19秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145419
求助须知:如何正确求助?哪些是违规求助? 2796867
关于积分的说明 7821676
捐赠科研通 2453124
什么是DOI,文献DOI怎么找? 1305464
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464