生物
结核分枝杆菌
微生物学
生物膜
免疫系统
细胞生物学
吞噬作用
先天免疫系统
细菌
吞噬细胞
多药耐受
抗菌肽
肺结核
免疫学
抗菌剂
医学
遗传学
病理
作者
Richa Mishra,Mélanie T. M. Hannebelle,Vishal P. Patil,A. Dubois,Cristina García-Mouton,Gabriela M. Kirsch,Maxime Jan,Kunal Sharma,Nicolas Guex,Jessica Sordet‐Dessimoz,Jesús Pérez‐Gil,Manu Prakash,Graham Knott,Neeraj Dhar,John D. McKinney,Vivek V. Thacker
出处
期刊:Cell
[Elsevier]
日期:2023-10-20
卷期号:186 (23): 5135-5150.e28
被引量:20
标识
DOI:10.1016/j.cell.2023.09.016
摘要
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
科研通智能强力驱动
Strongly Powered by AbleSci AI