已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Medical applications of generative adversarial network: a visualization analysis

领域(数学) 梅德林 医学 医学物理学 数据科学 计算机科学 政治学 数学 法学 纯数学
作者
Fan Zhang,Lianzhou Wang,Jiayin Zhao,Xinhong Zhang
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:64 (10): 2757-2767 被引量:6
标识
DOI:10.1177/02841851231189035
摘要

Background Deep learning (DL) is one of the latest approaches to artificial intelligence. As an unsupervised DL method, a generative adversarial network (GAN) can be used to synthesize new data. Purpose To explore GAN applications in medicine and point out the significance of its existence for clinical medical research, as well as to provide a visual bibliometric analysis of GAN applications in the medical field in combination with the scientometric software Citespace and statistical analysis methods. Material and Methods PubMed, MEDLINE, Web of Science, and Google Scholar were searched to identify studies of GAN in medical applications between 2017 and 2022. This study was performed and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Citespace was used to analyze the number of publications, authors, institutions, and keywords of articles related to GAN in medical applications. Results The applications of GAN in medicine are not limited to medical image processing, but will also penetrate wider and more complex fields, or may be applied to clinical medicine. Eligibility criteria were the full texts of peer-reviewed journals reporting the application of GANs in medicine. Research selections included material published in English between 1 January 2017 and 1 December 2022. Conclusion GAN has been fully applied to the medical field and will be more deeply and widely used in clinical medicine, especially in the field of privacy protection and medical diagnosis. However, clinical applications of GAN require consideration of ethical and legal issues. GAN-based applications should be well validated by expert radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
3秒前
田様应助脑阔药爆炸采纳,获得10
4秒前
4秒前
7秒前
8秒前
oleskarabach发布了新的文献求助10
8秒前
Lee完成签到,获得积分10
9秒前
瀚海的雄狮完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
NiKi发布了新的文献求助20
12秒前
大小可爱发布了新的文献求助30
14秒前
所所应助大小可爱采纳,获得10
23秒前
量子星尘发布了新的文献求助50
27秒前
28秒前
29秒前
大小可爱完成签到,获得积分10
30秒前
kissssp发布了新的文献求助10
33秒前
aniywn完成签到,获得积分10
35秒前
三叔发布了新的文献求助10
37秒前
李健应助亵渎采纳,获得10
37秒前
量子星尘发布了新的文献求助10
38秒前
42秒前
43秒前
幸运星完成签到 ,获得积分10
44秒前
乐乐应助NiKi采纳,获得20
46秒前
明理易槐发布了新的文献求助10
46秒前
大力黑米完成签到 ,获得积分10
52秒前
54秒前
量子星尘发布了新的文献求助10
54秒前
56秒前
aniywn发布了新的文献求助30
1分钟前
重要的问旋完成签到,获得积分10
1分钟前
NexusExplorer应助yolo采纳,获得10
1分钟前
三叔完成签到,获得积分0
1分钟前
Orange应助神勇道罡采纳,获得10
1分钟前
tjnksy完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
亵渎发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660895
求助须知:如何正确求助?哪些是违规求助? 3222117
关于积分的说明 9743514
捐赠科研通 2931648
什么是DOI,文献DOI怎么找? 1605116
邀请新用户注册赠送积分活动 757703
科研通“疑难数据库(出版商)”最低求助积分说明 734462