Temporal Micro-Action Localization for Videofluoroscopic Swallowing Study

计算机科学 任务(项目管理) 人工智能 吞咽 动作(物理) 机器学习 模式识别(心理学) 医学 物理 管理 牙科 量子力学 经济
作者
Xianghui Ruan,Meng Dai,Zhuokun Chen,Zeng You,Yaowen Zhang,Yuanqing Li,Zulin Dou,Mingkui Tan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 5904-5913 被引量:2
标识
DOI:10.1109/jbhi.2023.3313255
摘要

Videofluoroscopic swallowing study (VFSS) visualizes the swallowing movement by using X-ray fluoroscopy, which is the most widely used method for dysphagia examination. To better facilitate swallowing assessment, the temporal parameter is one of the most important indicators. However, most information of that acquire is hand-crafted and elaborated, which is time-consuming and difficult to ensure objectivity and accuracy. In this article, we propose to formulate this task as a temporal action localization task and solve it using deep neural networks. However, the action of VFSS has the following characteristics such as small motion targets, small action amplitudes, large sample variances, short duration, and variations in duration. Furthermore, all existing methods often rely on daily behaviors, which makes locating and recognizing micro-actions more challenging. To address the above issues, we first collect and annotate the VFSS micro-action dataset, which includes 847 VFSS data from 71 subjects, due to the lack of benchmarks. We then introduce a coarse-to-fine mechanism to handle the short and repeated nature of micro-actions, which can significantly enhancing micro-action localization accuracy. Moreover, we propose a Variable-Size Window Generator method, which improves the model's characterization performance and addresses the issue of different action timings, leading to further improvements in localization accuracy. The results of our experiments demonstrate the superiority of our method, with significantly improved performance (46.10% vs. 37.70%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助标致白卉采纳,获得10
1秒前
SInyi完成签到,获得积分10
1秒前
斯文败类应助Macong_44713采纳,获得10
1秒前
2秒前
2秒前
NZH发布了新的文献求助10
3秒前
董咚咚完成签到,获得积分10
3秒前
jwx应助灵活又幸福的胖采纳,获得10
4秒前
Daisy完成签到,获得积分10
4秒前
kkkkkk完成签到,获得积分10
5秒前
爱学习的媛子完成签到,获得积分20
5秒前
5秒前
5秒前
liangzhy发布了新的文献求助10
6秒前
爱静静应助科研达人采纳,获得10
6秒前
7秒前
吕广霞发布了新的文献求助10
7秒前
7秒前
沸羊羊完成签到,获得积分10
7秒前
赫连一斩完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
爆米花应助tsngl采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
悠咪完成签到,获得积分20
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
wanci应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
yin应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得30
9秒前
maohui完成签到,获得积分10
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320