A Nomogram Based on Pretreatment Radiomics and Dosiomics Features for Predicting Overall Survival for Esophageal Squamous Cell Cancer: Multi-Institutional Study

列线图 医学 无线电技术 比例危险模型 逻辑回归 单变量 阶段(地层学) 正电子发射断层摄影术 T级 放射科 队列 食管癌 肿瘤科 核医学 内科学 癌症 多元统计 总体生存率 机器学习 古生物学 生物 计算机科学
作者
Daisuke Kawahara,Ryo Nishioka,Yu Murakami,Yukio Emoto,Koya Iwashita,Hirohito Kubota,Ryohei Sasaki,Yujiro Nagata
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e470-e471
标识
DOI:10.1016/j.ijrobp.2023.06.1678
摘要

The current study aims to propose a nomogram-based 2- and 3-years survival prediction model for esophageal squamous cell carcinoma treated by definitive radiotherapy using pretreatment computed tomography (CT), positron emission tomography (FDG PET) radiomic features and dosiomics features in addition to the common clinical factors using multi-institution data.Data of 112 patients from one institution and 28 patients from the other institution were retrospectively collected. Radiomics and dosiomics features were extracted using five segmentations on CT and PET images and dose distribution. The least absolute shrinkage and selection operator (LASSO) with logistic regression was used to select radiomics and dosiomics features by calculating the radiomics and dosiomics scores (Rad-score and Dos-score), respectively, in the training model. The predictive clinical factors, Rad-score, and Dos-score were identified to develop a nomogram model.We extracted 15219 features from the radiomics and dosiomics analysis. By LASSO Cox regression analysis, 13 CT-based radiomics features, 11 PET-based radiomics features, and 19 dosiomics features were selected. Clinical factors of T-stage, N-stage, and clinical stage were selected as significant prognostic factors by univariate Cox regression analysis. A predictive nomogram for prognosis in was established using these factors. In the external validation cohort, the C-index of the combined model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were 0.74, 0.82, and 0.92, respectively. Moreover, we divided the cohort into high-risk and low-risk groups using the median nomogram score. Significant differences in overall survival (OS) in the combine model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were observed between the high-risk and low-risk groups (P = 0.019, P = 0.038, and 0.014, respectively).The current study established and validated 2- and 3-year survival prediction models based on radiomics and dosiomics features with clinical factors. The prediction model with dosiomics analysis could better predict OS than CT- and PET-based radiomics analysis in esophageal cancer patients treated with radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
msn00发布了新的文献求助10
刚刚
1秒前
1秒前
3秒前
上官若男应助故意的乐菱采纳,获得10
4秒前
wfrg发布了新的文献求助10
4秒前
木木发布了新的文献求助10
4秒前
4秒前
zmy发布了新的文献求助10
5秒前
在水一方应助sci采纳,获得10
5秒前
王果冻完成签到 ,获得积分10
5秒前
琪琪完成签到,获得积分10
6秒前
han完成签到,获得积分10
6秒前
7秒前
ikutovaya完成签到,获得积分10
8秒前
greatsnow发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
jimX完成签到,获得积分10
11秒前
11秒前
愤怒的灵松完成签到,获得积分10
12秒前
浮游给张佳树的求助进行了留言
13秒前
kkk发布了新的文献求助10
13秒前
13秒前
科目三应助医学小废物采纳,获得10
13秒前
13秒前
小白天钓鱼完成签到 ,获得积分10
14秒前
15秒前
香蕉君达完成签到,获得积分10
15秒前
GHJ发布了新的文献求助10
16秒前
16秒前
zmy发布了新的文献求助10
16秒前
沉淀完成签到,获得积分10
18秒前
sci发布了新的文献求助10
18秒前
19秒前
19秒前
天真大神发布了新的文献求助10
19秒前
orixero应助zhigaow采纳,获得10
20秒前
21秒前
活力科研人完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492873
求助须知:如何正确求助?哪些是违规求助? 4590780
关于积分的说明 14432553
捐赠科研通 4523428
什么是DOI,文献DOI怎么找? 2478337
邀请新用户注册赠送积分活动 1463356
关于科研通互助平台的介绍 1436082