A Nomogram Based on Pretreatment Radiomics and Dosiomics Features for Predicting Overall Survival for Esophageal Squamous Cell Cancer: Multi-Institutional Study

列线图 医学 无线电技术 比例危险模型 逻辑回归 单变量 阶段(地层学) 正电子发射断层摄影术 T级 放射科 队列 食管癌 肿瘤科 核医学 内科学 癌症 多元统计 总体生存率 机器学习 古生物学 生物 计算机科学
作者
Daisuke Kawahara,Ryo Nishioka,Yu Murakami,Yukio Emoto,Koya Iwashita,Hirohito Kubota,Ryohei Sasaki,Yujiro Nagata
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e470-e471
标识
DOI:10.1016/j.ijrobp.2023.06.1678
摘要

The current study aims to propose a nomogram-based 2- and 3-years survival prediction model for esophageal squamous cell carcinoma treated by definitive radiotherapy using pretreatment computed tomography (CT), positron emission tomography (FDG PET) radiomic features and dosiomics features in addition to the common clinical factors using multi-institution data.Data of 112 patients from one institution and 28 patients from the other institution were retrospectively collected. Radiomics and dosiomics features were extracted using five segmentations on CT and PET images and dose distribution. The least absolute shrinkage and selection operator (LASSO) with logistic regression was used to select radiomics and dosiomics features by calculating the radiomics and dosiomics scores (Rad-score and Dos-score), respectively, in the training model. The predictive clinical factors, Rad-score, and Dos-score were identified to develop a nomogram model.We extracted 15219 features from the radiomics and dosiomics analysis. By LASSO Cox regression analysis, 13 CT-based radiomics features, 11 PET-based radiomics features, and 19 dosiomics features were selected. Clinical factors of T-stage, N-stage, and clinical stage were selected as significant prognostic factors by univariate Cox regression analysis. A predictive nomogram for prognosis in was established using these factors. In the external validation cohort, the C-index of the combined model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were 0.74, 0.82, and 0.92, respectively. Moreover, we divided the cohort into high-risk and low-risk groups using the median nomogram score. Significant differences in overall survival (OS) in the combine model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were observed between the high-risk and low-risk groups (P = 0.019, P = 0.038, and 0.014, respectively).The current study established and validated 2- and 3-year survival prediction models based on radiomics and dosiomics features with clinical factors. The prediction model with dosiomics analysis could better predict OS than CT- and PET-based radiomics analysis in esophageal cancer patients treated with radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
郑朗逸完成签到,获得积分10
2秒前
2秒前
ZY完成签到 ,获得积分10
3秒前
玛雅太阳神完成签到,获得积分10
3秒前
lili完成签到,获得积分10
4秒前
5秒前
长心完成签到,获得积分10
7秒前
张瑜完成签到,获得积分10
7秒前
7秒前
彩虹捕手发布了新的文献求助10
7秒前
专注安发布了新的文献求助10
9秒前
chouchou发布了新的文献求助10
9秒前
10秒前
y9gyn_37完成签到,获得积分10
10秒前
11秒前
桃井尤川完成签到,获得积分10
11秒前
Ava应助Zora采纳,获得10
11秒前
lili完成签到 ,获得积分10
11秒前
zorro3574发布了新的文献求助10
12秒前
海丽完成签到 ,获得积分10
12秒前
三三四完成签到,获得积分10
13秒前
韭菜盒子完成签到,获得积分10
13秒前
13秒前
hao完成签到,获得积分0
14秒前
灵巧的飞雪完成签到 ,获得积分10
15秒前
一二完成签到,获得积分10
15秒前
谭慧娉完成签到 ,获得积分10
16秒前
17秒前
璐璐完成签到 ,获得积分10
17秒前
俊杰完成签到,获得积分10
17秒前
魁梧的仰完成签到,获得积分20
18秒前
18秒前
19秒前
肱二头肌完成签到,获得积分10
19秒前
廖喜林完成签到,获得积分10
19秒前
赘婿应助逍遥子采纳,获得10
20秒前
852应助逍遥子采纳,获得10
20秒前
20秒前
ChiariRay完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685844
关于积分的说明 14840076
捐赠科研通 4675267
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471141