A Nomogram Based on Pretreatment Radiomics and Dosiomics Features for Predicting Overall Survival for Esophageal Squamous Cell Cancer: Multi-Institutional Study

列线图 医学 无线电技术 比例危险模型 逻辑回归 单变量 阶段(地层学) 正电子发射断层摄影术 T级 放射科 队列 食管癌 肿瘤科 核医学 内科学 癌症 多元统计 总体生存率 机器学习 古生物学 生物 计算机科学
作者
Daisuke Kawahara,Ryo Nishioka,Yu Murakami,Yukio Emoto,Koya Iwashita,Hirohito Kubota,Ryohei Sasaki,Yujiro Nagata
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e470-e471
标识
DOI:10.1016/j.ijrobp.2023.06.1678
摘要

The current study aims to propose a nomogram-based 2- and 3-years survival prediction model for esophageal squamous cell carcinoma treated by definitive radiotherapy using pretreatment computed tomography (CT), positron emission tomography (FDG PET) radiomic features and dosiomics features in addition to the common clinical factors using multi-institution data.Data of 112 patients from one institution and 28 patients from the other institution were retrospectively collected. Radiomics and dosiomics features were extracted using five segmentations on CT and PET images and dose distribution. The least absolute shrinkage and selection operator (LASSO) with logistic regression was used to select radiomics and dosiomics features by calculating the radiomics and dosiomics scores (Rad-score and Dos-score), respectively, in the training model. The predictive clinical factors, Rad-score, and Dos-score were identified to develop a nomogram model.We extracted 15219 features from the radiomics and dosiomics analysis. By LASSO Cox regression analysis, 13 CT-based radiomics features, 11 PET-based radiomics features, and 19 dosiomics features were selected. Clinical factors of T-stage, N-stage, and clinical stage were selected as significant prognostic factors by univariate Cox regression analysis. A predictive nomogram for prognosis in was established using these factors. In the external validation cohort, the C-index of the combined model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were 0.74, 0.82, and 0.92, respectively. Moreover, we divided the cohort into high-risk and low-risk groups using the median nomogram score. Significant differences in overall survival (OS) in the combine model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were observed between the high-risk and low-risk groups (P = 0.019, P = 0.038, and 0.014, respectively).The current study established and validated 2- and 3-year survival prediction models based on radiomics and dosiomics features with clinical factors. The prediction model with dosiomics analysis could better predict OS than CT- and PET-based radiomics analysis in esophageal cancer patients treated with radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助依旧采纳,获得30
1秒前
安屿完成签到,获得积分20
2秒前
2秒前
小初完成签到,获得积分20
2秒前
盐水z发布了新的文献求助10
2秒前
即将拥有腹肌的小王完成签到,获得积分10
4秒前
跳跃富完成签到,获得积分10
5秒前
MN关注了科研通微信公众号
5秒前
lr完成签到 ,获得积分10
5秒前
Youngen完成签到,获得积分10
6秒前
李爱国应助娜娜采纳,获得10
6秒前
鹅鹅鹅饿完成签到 ,获得积分10
7秒前
NexusExplorer应助Xin采纳,获得10
8秒前
华仔应助落瑾玘采纳,获得10
9秒前
斯文败类应助苹果不平采纳,获得10
9秒前
NIUB完成签到,获得积分10
9秒前
大卫在分享完成签到,获得积分0
9秒前
努力的学完成签到,获得积分10
10秒前
科研通AI2S应助十六采纳,获得10
11秒前
12秒前
无限雨南发布了新的文献求助20
14秒前
15秒前
盐水z完成签到,获得积分10
15秒前
wanli完成签到,获得积分10
15秒前
15秒前
66666完成签到,获得积分10
16秒前
兰亭序完成签到,获得积分10
16秒前
木cheng完成签到,获得积分20
16秒前
嘿嘿发布了新的文献求助10
17秒前
17秒前
noflatterer发布了新的文献求助10
18秒前
18秒前
JamesPei应助111采纳,获得10
19秒前
66666发布了新的文献求助10
20秒前
20秒前
21秒前
开心尔芙完成签到,获得积分10
22秒前
苹果不平发布了新的文献求助10
22秒前
23秒前
MN发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162790
求助须知:如何正确求助?哪些是违规求助? 2813724
关于积分的说明 7901861
捐赠科研通 2473365
什么是DOI,文献DOI怎么找? 1316788
科研通“疑难数据库(出版商)”最低求助积分说明 631520
版权声明 602175