A Nomogram Based on Pretreatment Radiomics and Dosiomics Features for Predicting Overall Survival for Esophageal Squamous Cell Cancer: Multi-Institutional Study

列线图 医学 无线电技术 比例危险模型 逻辑回归 单变量 阶段(地层学) 正电子发射断层摄影术 T级 放射科 队列 食管癌 肿瘤科 核医学 内科学 癌症 多元统计 总体生存率 机器学习 古生物学 生物 计算机科学
作者
Daisuke Kawahara,Ryo Nishioka,Yu Murakami,Yukio Emoto,Koya Iwashita,Hirohito Kubota,Ryohei Sasaki,Yujiro Nagata
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): e470-e471
标识
DOI:10.1016/j.ijrobp.2023.06.1678
摘要

The current study aims to propose a nomogram-based 2- and 3-years survival prediction model for esophageal squamous cell carcinoma treated by definitive radiotherapy using pretreatment computed tomography (CT), positron emission tomography (FDG PET) radiomic features and dosiomics features in addition to the common clinical factors using multi-institution data.Data of 112 patients from one institution and 28 patients from the other institution were retrospectively collected. Radiomics and dosiomics features were extracted using five segmentations on CT and PET images and dose distribution. The least absolute shrinkage and selection operator (LASSO) with logistic regression was used to select radiomics and dosiomics features by calculating the radiomics and dosiomics scores (Rad-score and Dos-score), respectively, in the training model. The predictive clinical factors, Rad-score, and Dos-score were identified to develop a nomogram model.We extracted 15219 features from the radiomics and dosiomics analysis. By LASSO Cox regression analysis, 13 CT-based radiomics features, 11 PET-based radiomics features, and 19 dosiomics features were selected. Clinical factors of T-stage, N-stage, and clinical stage were selected as significant prognostic factors by univariate Cox regression analysis. A predictive nomogram for prognosis in was established using these factors. In the external validation cohort, the C-index of the combined model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were 0.74, 0.82, and 0.92, respectively. Moreover, we divided the cohort into high-risk and low-risk groups using the median nomogram score. Significant differences in overall survival (OS) in the combine model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were observed between the high-risk and low-risk groups (P = 0.019, P = 0.038, and 0.014, respectively).The current study established and validated 2- and 3-year survival prediction models based on radiomics and dosiomics features with clinical factors. The prediction model with dosiomics analysis could better predict OS than CT- and PET-based radiomics analysis in esophageal cancer patients treated with radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CYJ完成签到,获得积分10
1秒前
TMF发布了新的文献求助50
1秒前
SCO完成签到,获得积分10
2秒前
精明手机完成签到,获得积分10
2秒前
某某某完成签到,获得积分10
2秒前
标致的方盒完成签到,获得积分10
2秒前
2秒前
芋你呀完成签到,获得积分10
2秒前
miao完成签到,获得积分10
3秒前
七兮发布了新的文献求助10
3秒前
坚强成风完成签到,获得积分10
3秒前
整个好活完成签到 ,获得积分10
3秒前
liyuqi61148完成签到,获得积分10
4秒前
刘俊彤完成签到 ,获得积分10
4秒前
loveananya完成签到,获得积分10
4秒前
4秒前
文静盈发布了新的文献求助10
4秒前
Soin发布了新的文献求助10
5秒前
ori12138完成签到,获得积分10
6秒前
鱼鱼鱼完成签到,获得积分10
6秒前
6秒前
兑润泽完成签到,获得积分10
7秒前
Donson_Li完成签到,获得积分10
7秒前
125mmD91T完成签到,获得积分10
8秒前
Underwood111完成签到,获得积分10
9秒前
烂漫映之完成签到 ,获得积分10
9秒前
10秒前
李升洋完成签到 ,获得积分10
10秒前
少年游完成签到,获得积分10
10秒前
10秒前
Lucycomplex完成签到,获得积分10
11秒前
东尼发布了新的文献求助10
11秒前
SS完成签到,获得积分0
12秒前
生物科研小白完成签到 ,获得积分10
13秒前
wangcw完成签到 ,获得积分10
13秒前
13秒前
小白完成签到 ,获得积分10
13秒前
yx阿聪完成签到,获得积分10
14秒前
波风水门_文献来晚了吗完成签到,获得积分10
14秒前
小刚完成签到,获得积分0
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465