A Nomogram Based on Pretreatment Radiomics and Dosiomics Features for Predicting Overall Survival for Esophageal Squamous Cell Cancer: Multi-Institutional Study

列线图 医学 无线电技术 比例危险模型 逻辑回归 单变量 阶段(地层学) 正电子发射断层摄影术 T级 放射科 队列 食管癌 肿瘤科 核医学 内科学 癌症 多元统计 总体生存率 机器学习 古生物学 生物 计算机科学
作者
Daisuke Kawahara,Ryo Nishioka,Yu Murakami,Yukio Emoto,Koya Iwashita,Hirohito Kubota,Ryohei Sasaki,Yujiro Nagata
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e470-e471
标识
DOI:10.1016/j.ijrobp.2023.06.1678
摘要

The current study aims to propose a nomogram-based 2- and 3-years survival prediction model for esophageal squamous cell carcinoma treated by definitive radiotherapy using pretreatment computed tomography (CT), positron emission tomography (FDG PET) radiomic features and dosiomics features in addition to the common clinical factors using multi-institution data.Data of 112 patients from one institution and 28 patients from the other institution were retrospectively collected. Radiomics and dosiomics features were extracted using five segmentations on CT and PET images and dose distribution. The least absolute shrinkage and selection operator (LASSO) with logistic regression was used to select radiomics and dosiomics features by calculating the radiomics and dosiomics scores (Rad-score and Dos-score), respectively, in the training model. The predictive clinical factors, Rad-score, and Dos-score were identified to develop a nomogram model.We extracted 15219 features from the radiomics and dosiomics analysis. By LASSO Cox regression analysis, 13 CT-based radiomics features, 11 PET-based radiomics features, and 19 dosiomics features were selected. Clinical factors of T-stage, N-stage, and clinical stage were selected as significant prognostic factors by univariate Cox regression analysis. A predictive nomogram for prognosis in was established using these factors. In the external validation cohort, the C-index of the combined model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were 0.74, 0.82, and 0.92, respectively. Moreover, we divided the cohort into high-risk and low-risk groups using the median nomogram score. Significant differences in overall survival (OS) in the combine model of CT-based radiomics, PET-based radiomics, and dosiomics features with clinical factors were observed between the high-risk and low-risk groups (P = 0.019, P = 0.038, and 0.014, respectively).The current study established and validated 2- and 3-year survival prediction models based on radiomics and dosiomics features with clinical factors. The prediction model with dosiomics analysis could better predict OS than CT- and PET-based radiomics analysis in esophageal cancer patients treated with radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ovo发布了新的文献求助10
刚刚
万能图书馆应助1900tdlemon采纳,获得10
刚刚
DY发布了新的文献求助30
刚刚
zhili发布了新的文献求助10
刚刚
1秒前
阔达的扬完成签到,获得积分10
1秒前
hhh完成签到,获得积分20
1秒前
怡然的向南完成签到,获得积分10
1秒前
孙一斤完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
jiayou完成签到,获得积分20
2秒前
Ray发布了新的文献求助10
2秒前
含蓄衣完成签到,获得积分20
2秒前
WFLLL应助怀风采纳,获得10
2秒前
星辰大海应助Joyan采纳,获得10
3秒前
3秒前
NexusExplorer应助无线网采纳,获得30
4秒前
安详香水发布了新的文献求助30
4秒前
4秒前
火星上莛发布了新的文献求助10
5秒前
追梦小帅完成签到,获得积分10
5秒前
yao完成签到,获得积分10
5秒前
5秒前
传奇3应助蟹老板采纳,获得10
6秒前
6秒前
YUMI发布了新的文献求助10
6秒前
6秒前
负责的寄容完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
hhh发布了新的文献求助10
7秒前
8秒前
彬彬发布了新的文献求助10
8秒前
观潮应助十一采纳,获得10
8秒前
8秒前
追梦小帅发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692886
求助须知:如何正确求助?哪些是违规求助? 5090698
关于积分的说明 15210088
捐赠科研通 4850102
什么是DOI,文献DOI怎么找? 2601504
邀请新用户注册赠送积分活动 1553332
关于科研通互助平台的介绍 1511381