居里温度
过电位
铁磁性
塔菲尔方程
材料科学
兴奋剂
析氧
密度泛函理论
磁性半导体
分析化学(期刊)
凝聚态物理
物理化学
化学
光电子学
计算化学
电极
物理
电化学
色谱法
作者
Bochong Wang,Yongbing Li,Li Xiang,Congpu Mu,Jianyong Xiang,Shijun Yuan,Anmin Nie,Kun Zhai,Tianyu Xue,Fusheng Wen,Zhongyuan Liu
摘要
Improving the Curie temperature and catalytic performance of two-dimensional magnetic materials through elemental doping is a feasible strategy. In this study, Ni-doped (Fe1−xNix)5GeTe2 (0 ≤ x ≤ 0.3) single crystals were grown via chemical vapor transport method and the amount of Ni doping could be precisely controlled. As the amount of Ni doping increases, the long-range ferromagnetic ordering temperature increased, and (Fe0.7Ni0.3)5GeTe2 exhibited the highest Curie temperature Tc = 492.73 K. The improvement of Tc can be attributed to the occupancy of the Fe1 site by Ni atoms. The oxygen evolution reaction (OER) activities of liquid phase exfoliated (Fe1−xNix)5GeTe2 nanoflakes were enhanced by doping Ni atoms, and the overpotential decrease to 464 mV at 10 mA/cm2 with a small Tafel slope of 41 mV/dec for the (Fe0.9Ni0.1)5GeTe2 nanoflakes. Based on the density functional theory calculations, when half of the Fe1 sites were replaced by Ni atoms, the number of enhanced OER active sites (Fe1-Te sites) reached maximum, and then, (Fe0.9Ni0.1)5GeTe2 exhibited the best catalytic performance. The experimental and theoretical calculation results indicate that replacing Fe1 site with Ni in two-dimensional magnetic Fe5GeTe2 can effectively increase the Curie temperature and enhance OER activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI