Application of Local-Feature-Based 3-D Point Cloud Stitching Method of Low-Overlap Point Cloud to Aero-Engine Blade Measurement

图像拼接 点云 迭代最近点 刀(考古) 特征(语言学) 计算机科学 人工智能 计算机视觉 涡轮叶片 点(几何) 算法 工程类 数学 涡轮机 航空航天工程 结构工程 几何学 语言学 哲学
作者
Yiwei Dong,Bo Xu,Tao Liao,Chunping Yin,Zhiyong Tan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:18
标识
DOI:10.1109/tim.2023.3309384
摘要

Blades are a core component of aero-engines. The accuracy of the blade profile of an aero-engine is crucial for its normal operation. Considering the limitations of low-overlap scanning point cloud data stitching in blade profile measurements, this paper proposes an improved feature fusion-trimmed iterative closest-point (TrICP) algorithm, realizing automatic stitching of three-dimensional (3D) point clouds scanned by laser measurements. In the stitching experiment of the Stanford 3D scan dataset Dragon-scan point cloud, the success rates of viewing angle differences of 24° and 48° were 100% and 66.7%, respectively, which were higher than those obtained using the TrICP algorithm, FPFH+SAC-IA, and ISS_BR+SHOT. The proposed algorithm exhibited high stitching success rates and efficiencies in the point cloud stitching experiment with large transformations. Moreover, the algorithm was employed as a prestitching tool. An automatic stitching method was further proposed by combining the point-to-plane iterative closest-point algorithm for performing precise stitching and the pose-map optimization algorithm for performing automatic stitching experiments on blade laser measurement data. The point cloud data measured using a coordinate-measuring machine further verified the stitching accuracy of our algorithm. The automatic stitching method exhibited good performance with regard to the scanning point cloud data of turbine rotor and guide blades (turbine rotor and guide blades have different shapes). The root-mean-square errors of the stitching experiments were 0.0354 and 0.0398 mm, meeting the error requirement of blade design and processing. Results show that the proposed algorithm is superior to traditional algorithms and shows promise for engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TORCH完成签到 ,获得积分10
1秒前
李健的小迷弟应助lin采纳,获得10
1秒前
1秒前
2秒前
TT发布了新的文献求助10
2秒前
奶糖完成签到,获得积分10
5秒前
丘比特应助浪迹天涯采纳,获得10
6秒前
8秒前
8秒前
虚幻白玉发布了新的文献求助10
9秒前
清客完成签到 ,获得积分10
9秒前
传奇3应助阳阳采纳,获得10
9秒前
11秒前
皮皮桂发布了新的文献求助10
11秒前
Hello应助无奈傲菡采纳,获得10
11秒前
故意的傲玉应助FENGHUI采纳,获得10
12秒前
13秒前
科研通AI5应助nextconnie采纳,获得10
14秒前
James完成签到,获得积分10
14秒前
15秒前
Lucas应助sun采纳,获得10
16秒前
KristenStewart完成签到,获得积分10
18秒前
过时的热狗完成签到,获得积分10
18秒前
点点完成签到,获得积分10
18秒前
Zxc发布了新的文献求助10
19秒前
涨芝士完成签到 ,获得积分10
20秒前
21秒前
无名欧文关注了科研通微信公众号
21秒前
科研123完成签到,获得积分10
23秒前
crescent完成签到 ,获得积分10
25秒前
无奈傲菡发布了新的文献求助10
25秒前
烟花应助123号采纳,获得10
28秒前
超帅的遥完成签到,获得积分10
28秒前
Zxc完成签到,获得积分10
29秒前
lbt完成签到 ,获得积分10
30秒前
yao完成签到 ,获得积分10
31秒前
31秒前
33秒前
34秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849