Remaining useful life prediction of rolling bearings based on TCN-MSA

计算机科学 方位(导航) 卷积神经网络 一般化 人工智能 数学 数学分析
作者
Guang‐Jun Jiang,Zheng-Wei Duan,Qi Zhao,Dezhi Li,Yu Luan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025125-025125 被引量:9
标识
DOI:10.1088/1361-6501/ad07b6
摘要

Abstract As a pivotal element within the drive system of mechanical equipment, the remaining useful life (RUL) of rolling bearings not only dictates the lifespan of the equipment’s drive system but also the overall machine. An inaccurate prediction of the RUL of rolling bearings could hinder the formulation of maintenance strategies and lead to a chain of failures stemming from bearing malfunction, culminating in potentially catastrophic accidents. This paper designs a novel temporal convolutional network-multi-head self-attention (TCN-MSA) model for predicting the RUL of rolling bearings. This model considers the intricate non-linearity and complexity of mechanical equipment systems. It captures long-term dependencies using the causally inflated convolutional structure within the temporal convolutional network (TCN) and simultaneously extracts features from the frequency domain signal. Subsequently, by employing the multi-head self-attention (MSA) mechanism, the model discerns the significance of different features throughout the degradation process of rolling bearings by analyzing global information. The final prediction for rolling bearings’ RUL has been successfully attained. To underline the excellence of the method presented in this paper, a comparative analysis was performed with existing methods, such as convolutional neural network, gate recurrent unit, and TCN. The results highlight that the model designed in this paper surpasses other existing methods in predicting the RUL of rolling bearings, demonstrating superior prediction accuracy and robust generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔都欢完成签到,获得积分10
1秒前
穆紫应助哈哈采纳,获得10
2秒前
2秒前
赘婿应助topsun采纳,获得10
3秒前
33完成签到 ,获得积分10
3秒前
矮小的恋风完成签到,获得积分10
4秒前
lit发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
心碎的西瓜完成签到,获得积分10
9秒前
9秒前
10秒前
12秒前
汤博森完成签到,获得积分10
12秒前
依依发布了新的文献求助10
13秒前
平常成仁发布了新的文献求助10
13秒前
LYegoist完成签到,获得积分10
14秒前
15秒前
星辰大海应助jzmulyl采纳,获得10
15秒前
Carrey发布了新的文献求助10
15秒前
Yangzx发布了新的文献求助10
18秒前
Myyyy发布了新的文献求助10
18秒前
勤恳青槐完成签到 ,获得积分10
19秒前
神揽星辰入梦完成签到,获得积分10
19秒前
20秒前
20秒前
活泼的烙完成签到 ,获得积分10
20秒前
yanyao完成签到 ,获得积分10
23秒前
我爱我的国完成签到,获得积分10
24秒前
Myyyy完成签到,获得积分20
26秒前
抱住仙人球应助lit采纳,获得10
27秒前
xsx完成签到,获得积分10
27秒前
27秒前
27秒前
爱吃西红柿完成签到 ,获得积分10
27秒前
Timo干物类完成签到,获得积分10
29秒前
袁琴发布了新的文献求助10
31秒前
敬老院N号应助明德zhuang采纳,获得50
33秒前
Garrett发布了新的文献求助40
33秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053902
求助须知:如何正确求助?哪些是违规求助? 2711045
关于积分的说明 7424610
捐赠科研通 2355580
什么是DOI,文献DOI怎么找? 1247273
科研通“疑难数据库(出版商)”最低求助积分说明 606339
版权声明 596012