Remaining useful life prediction of rolling bearings based on TCN-MSA

计算机科学 方位(导航) 卷积神经网络 一般化 人工智能 数学 数学分析
作者
Guang‐Jun Jiang,Zheng-Wei Duan,Qi Zhao,Dezhi Li,Yu Luan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025125-025125 被引量:20
标识
DOI:10.1088/1361-6501/ad07b6
摘要

Abstract As a pivotal element within the drive system of mechanical equipment, the remaining useful life (RUL) of rolling bearings not only dictates the lifespan of the equipment’s drive system but also the overall machine. An inaccurate prediction of the RUL of rolling bearings could hinder the formulation of maintenance strategies and lead to a chain of failures stemming from bearing malfunction, culminating in potentially catastrophic accidents. This paper designs a novel temporal convolutional network-multi-head self-attention (TCN-MSA) model for predicting the RUL of rolling bearings. This model considers the intricate non-linearity and complexity of mechanical equipment systems. It captures long-term dependencies using the causally inflated convolutional structure within the temporal convolutional network (TCN) and simultaneously extracts features from the frequency domain signal. Subsequently, by employing the multi-head self-attention (MSA) mechanism, the model discerns the significance of different features throughout the degradation process of rolling bearings by analyzing global information. The final prediction for rolling bearings’ RUL has been successfully attained. To underline the excellence of the method presented in this paper, a comparative analysis was performed with existing methods, such as convolutional neural network, gate recurrent unit, and TCN. The results highlight that the model designed in this paper surpasses other existing methods in predicting the RUL of rolling bearings, demonstrating superior prediction accuracy and robust generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
栉风沐雨完成签到,获得积分10
刚刚
未道完成签到,获得积分10
刚刚
H..发布了新的文献求助10
刚刚
刚刚
斯文败类应助惜雨采纳,获得10
1秒前
2秒前
顺利秋灵发布了新的文献求助10
2秒前
2秒前
孙燕应助zhangfuchao采纳,获得10
2秒前
3秒前
sugarcane发布了新的文献求助10
3秒前
3秒前
3秒前
花花发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
大魔发布了新的文献求助10
4秒前
张鱼小源子完成签到,获得积分10
5秒前
未道发布了新的文献求助10
5秒前
Vapaus完成签到,获得积分10
5秒前
5秒前
小太阳完成签到,获得积分20
5秒前
柔弱山芙完成签到,获得积分10
6秒前
木可完成签到,获得积分10
6秒前
shawn完成签到 ,获得积分10
6秒前
7秒前
zhongxuejie发布了新的文献求助10
7秒前
GAN完成签到,获得积分10
7秒前
JIAca发布了新的文献求助10
8秒前
hahhh7发布了新的文献求助10
8秒前
小太阳发布了新的文献求助10
9秒前
柔弱山芙发布了新的文献求助30
9秒前
9秒前
9秒前
李健的小迷弟应助boniu采纳,获得10
10秒前
tramp应助刻苦冷菱采纳,获得10
10秒前
脑洞疼应助maybe采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021