Remaining useful life prediction of rolling bearings based on TCN-MSA

计算机科学 方位(导航) 卷积神经网络 一般化 人工智能 数学 数学分析
作者
Guang‐Jun Jiang,Zheng-Wei Duan,Qi Zhao,Dezhi Li,Yu Luan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025125-025125 被引量:9
标识
DOI:10.1088/1361-6501/ad07b6
摘要

Abstract As a pivotal element within the drive system of mechanical equipment, the remaining useful life (RUL) of rolling bearings not only dictates the lifespan of the equipment’s drive system but also the overall machine. An inaccurate prediction of the RUL of rolling bearings could hinder the formulation of maintenance strategies and lead to a chain of failures stemming from bearing malfunction, culminating in potentially catastrophic accidents. This paper designs a novel temporal convolutional network-multi-head self-attention (TCN-MSA) model for predicting the RUL of rolling bearings. This model considers the intricate non-linearity and complexity of mechanical equipment systems. It captures long-term dependencies using the causally inflated convolutional structure within the temporal convolutional network (TCN) and simultaneously extracts features from the frequency domain signal. Subsequently, by employing the multi-head self-attention (MSA) mechanism, the model discerns the significance of different features throughout the degradation process of rolling bearings by analyzing global information. The final prediction for rolling bearings’ RUL has been successfully attained. To underline the excellence of the method presented in this paper, a comparative analysis was performed with existing methods, such as convolutional neural network, gate recurrent unit, and TCN. The results highlight that the model designed in this paper surpasses other existing methods in predicting the RUL of rolling bearings, demonstrating superior prediction accuracy and robust generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助Sue kong采纳,获得10
1秒前
哈哈哈哈完成签到,获得积分10
2秒前
whx关闭了whx文献求助
3秒前
3秒前
4秒前
chunb发布了新的文献求助10
6秒前
熊小子爱学习完成签到,获得积分10
6秒前
陈晨发布了新的文献求助20
6秒前
7秒前
archer发布了新的文献求助10
7秒前
美满的小蘑菇完成签到 ,获得积分10
8秒前
8秒前
10秒前
Archer发布了新的文献求助10
10秒前
Dding应助熊小子爱学习采纳,获得10
10秒前
dingyang41发布了新的文献求助10
10秒前
10秒前
孤独银耳汤完成签到,获得积分10
10秒前
不配.应助筱澍采纳,获得10
11秒前
11秒前
12秒前
bk2020113458完成签到,获得积分10
12秒前
阿姊完成签到 ,获得积分10
12秒前
大气的鹭洋完成签到,获得积分10
13秒前
英俊的铭应助斯文谷秋采纳,获得30
14秒前
文艺裘完成签到,获得积分10
15秒前
puke发布了新的文献求助10
16秒前
萨格发布了新的文献求助10
16秒前
闪闪落雁完成签到,获得积分10
17秒前
17秒前
兴奋的若菱完成签到 ,获得积分10
18秒前
18秒前
mhl11应助Mirage采纳,获得10
18秒前
19秒前
老叶完成签到,获得积分10
20秒前
俗人应助archer采纳,获得10
20秒前
whm完成签到,获得积分10
21秒前
SciGPT应助俭朴的胡萝卜采纳,获得10
21秒前
aaa完成签到,获得积分10
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236198
求助须知:如何正确求助?哪些是违规求助? 2881908
关于积分的说明 8224330
捐赠科研通 2549909
什么是DOI,文献DOI怎么找? 1378738
科研通“疑难数据库(出版商)”最低求助积分说明 648465
邀请新用户注册赠送积分活动 623955