Towards Real-Time Sleep Stage Prediction and Online Calibration Based on Architecturally Switchable Deep Learning Models

计算机科学 睡眠(系统调用) 睡眠阶段 人工智能 稳健性(进化) 深度学习 机器学习 多导睡眠图 脑电图 医学 生物化学 化学 精神科 基因 操作系统
作者
Hangyu Zhu,Yonglin Wu,Yao Guo,Cong Fu,Feng Shu,Huan Yu,Wei Chen,Chen Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 470-481 被引量:2
标识
DOI:10.1109/jbhi.2023.3327470
摘要

Despite the recent advances in automatic sleep staging, few studies have focused on real-time sleep staging to promote the regulation of sleep or the intervention of sleep disorders. In this paper, a novel network named SwSleepNet, that can handle both precisely offline sleep staging, and online sleep stages prediction and calibration is proposed. For offline analysis, the proposed network coordinates sequence broadening module (SBM), sequential CNN (SCNN), squeeze and excitation (SE) block, and sequence consolidation module (SCM) to balance the operational efficiency of the network and the comprehensive feature extraction. For online analysis, only SCNN and SE are involved in predicting the sleep stage within a short-time segment of the recordings. Once more than two successive segments have disparate predictions, the calibration mechanism will be triggered, and contextual information will be involved. In addition, to investigate the appropriate time of the segment that is suitable to predict a sleep stage, segments with five-second, three-second, and two-second data are analyzed. The performance of SwSleepNet is validated on two publicly available datasets Sleep-EDF Expanded and Montreal Archive of Sleep Studies (MASS), and one clinical dataset Huashan Hospital Fudan University (HSFU), with the offline accuracy of 84.5%, 86.7%, and 81.8%, respectively, which outperforms the state-of-the-art methods. Additionally, for the online sleep staging, the dedicated calibration mechanism allows SwSleepNet to achieve high accuracy over 80% on three datasets with the short-time segments, demonstrating the robustness and stability of SwSleepNet. This study presents a real-time sleep staging architecture, which is expected to pave the way for accurate sleep regulation and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qiushui发布了新的文献求助10
1秒前
平硕完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
小个白完成签到,获得积分10
5秒前
上官若男应助zz采纳,获得10
5秒前
yeyeye完成签到,获得积分20
5秒前
浮游应助achulw采纳,获得10
6秒前
忧郁丹彤发布了新的文献求助10
6秒前
糯米丸子完成签到,获得积分10
7秒前
butterfly0完成签到,获得积分10
7秒前
yeyeye发布了新的文献求助10
8秒前
英姑应助傻子与白痴采纳,获得10
8秒前
英俊的铭应助K先生采纳,获得10
8秒前
福娃选手发布了新的文献求助10
8秒前
挽星完成签到 ,获得积分10
9秒前
学术小猫完成签到 ,获得积分10
10秒前
mm发布了新的文献求助10
11秒前
无他完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
小二郎应助ttt采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
pluto应助mao采纳,获得10
12秒前
活力的梦蕊完成签到,获得积分10
13秒前
科研通AI5应助xu采纳,获得10
13秒前
garden发布了新的文献求助20
14秒前
15秒前
尉迟靖仇完成签到,获得积分10
15秒前
15秒前
log完成签到,获得积分10
15秒前
15秒前
15秒前
小和发布了新的文献求助10
15秒前
16秒前
宓不评完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920881
求助须知:如何正确求助?哪些是违规求助? 4192265
关于积分的说明 13020962
捐赠科研通 3963415
什么是DOI,文献DOI怎么找? 2172449
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099258