Towards Real-Time Sleep Stage Prediction and Online Calibration Based on Architecturally Switchable Deep Learning Models

计算机科学 睡眠(系统调用) 睡眠阶段 人工智能 稳健性(进化) 深度学习 机器学习 多导睡眠图 脑电图 医学 生物化学 化学 精神科 基因 操作系统
作者
Hangyu Zhu,Yonglin Wu,Yao Guo,Cong Fu,Feng Shu,Huan Yu,Wei Chen,Chen Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 470-481 被引量:2
标识
DOI:10.1109/jbhi.2023.3327470
摘要

Despite the recent advances in automatic sleep staging, few studies have focused on real-time sleep staging to promote the regulation of sleep or the intervention of sleep disorders. In this paper, a novel network named SwSleepNet, that can handle both precisely offline sleep staging, and online sleep stages prediction and calibration is proposed. For offline analysis, the proposed network coordinates sequence broadening module (SBM), sequential CNN (SCNN), squeeze and excitation (SE) block, and sequence consolidation module (SCM) to balance the operational efficiency of the network and the comprehensive feature extraction. For online analysis, only SCNN and SE are involved in predicting the sleep stage within a short-time segment of the recordings. Once more than two successive segments have disparate predictions, the calibration mechanism will be triggered, and contextual information will be involved. In addition, to investigate the appropriate time of the segment that is suitable to predict a sleep stage, segments with five-second, three-second, and two-second data are analyzed. The performance of SwSleepNet is validated on two publicly available datasets Sleep-EDF Expanded and Montreal Archive of Sleep Studies (MASS), and one clinical dataset Huashan Hospital Fudan University (HSFU), with the offline accuracy of 84.5%, 86.7%, and 81.8%, respectively, which outperforms the state-of-the-art methods. Additionally, for the online sleep staging, the dedicated calibration mechanism allows SwSleepNet to achieve high accuracy over 80% on three datasets with the short-time segments, demonstrating the robustness and stability of SwSleepNet. This study presents a real-time sleep staging architecture, which is expected to pave the way for accurate sleep regulation and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
冷酷愚志完成签到,获得积分10
1秒前
SciGPT应助YaoHui采纳,获得10
1秒前
哈哈哈哈哈哈完成签到,获得积分10
1秒前
2秒前
柒夏完成签到 ,获得积分10
2秒前
Jimmy完成签到,获得积分10
2秒前
啦啦啦发布了新的文献求助10
2秒前
3秒前
峥嵘发布了新的文献求助10
3秒前
Akim应助火星上的跳跳糖采纳,获得10
4秒前
cube发布了新的文献求助10
4秒前
宋琪琪发布了新的文献求助10
4秒前
5秒前
F.T完成签到,获得积分10
5秒前
ding应助聪明纸飞机采纳,获得10
6秒前
7秒前
大熊发布了新的文献求助10
7秒前
比个耶完成签到,获得积分10
7秒前
freeaway完成签到 ,获得积分10
7秒前
7秒前
xsq86驳回了tang应助
7秒前
祝顺遂发布了新的文献求助10
8秒前
平凡的红菱完成签到,获得积分10
8秒前
疯批镁铝发布了新的文献求助10
9秒前
可耐的毛衣完成签到,获得积分10
9秒前
无花果应助冷傲紫文采纳,获得30
9秒前
爱睡觉的亮亮完成签到,获得积分10
9秒前
顾建瑜发布了新的文献求助10
9秒前
传奇3应助平常访旋采纳,获得10
10秒前
峥嵘完成签到,获得积分10
11秒前
诸葛藏藏发布了新的文献求助10
11秒前
13秒前
coco完成签到,获得积分10
13秒前
大熊完成签到 ,获得积分10
13秒前
13秒前
木由完成签到,获得积分10
14秒前
啦啦啦完成签到,获得积分10
14秒前
疯批镁铝完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252162
求助须知:如何正确求助?哪些是违规求助? 4415980
关于积分的说明 13748195
捐赠科研通 4287828
什么是DOI,文献DOI怎么找? 2352660
邀请新用户注册赠送积分活动 1349440
关于科研通互助平台的介绍 1308945