Towards Real-Time Sleep Stage Prediction and Online Calibration Based on Architecturally Switchable Deep Learning Models

计算机科学 睡眠(系统调用) 睡眠阶段 人工智能 稳健性(进化) 深度学习 机器学习 多导睡眠图 脑电图 医学 生物化学 化学 精神科 基因 操作系统
作者
Hangyu Zhu,Yonglin Wu,Yao Guo,Cong Fu,Feng Shu,Huan Yu,Wei Chen,Chen Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 470-481 被引量:2
标识
DOI:10.1109/jbhi.2023.3327470
摘要

Despite the recent advances in automatic sleep staging, few studies have focused on real-time sleep staging to promote the regulation of sleep or the intervention of sleep disorders. In this paper, a novel network named SwSleepNet, that can handle both precisely offline sleep staging, and online sleep stages prediction and calibration is proposed. For offline analysis, the proposed network coordinates sequence broadening module (SBM), sequential CNN (SCNN), squeeze and excitation (SE) block, and sequence consolidation module (SCM) to balance the operational efficiency of the network and the comprehensive feature extraction. For online analysis, only SCNN and SE are involved in predicting the sleep stage within a short-time segment of the recordings. Once more than two successive segments have disparate predictions, the calibration mechanism will be triggered, and contextual information will be involved. In addition, to investigate the appropriate time of the segment that is suitable to predict a sleep stage, segments with five-second, three-second, and two-second data are analyzed. The performance of SwSleepNet is validated on two publicly available datasets Sleep-EDF Expanded and Montreal Archive of Sleep Studies (MASS), and one clinical dataset Huashan Hospital Fudan University (HSFU), with the offline accuracy of 84.5%, 86.7%, and 81.8%, respectively, which outperforms the state-of-the-art methods. Additionally, for the online sleep staging, the dedicated calibration mechanism allows SwSleepNet to achieve high accuracy over 80% on three datasets with the short-time segments, demonstrating the robustness and stability of SwSleepNet. This study presents a real-time sleep staging architecture, which is expected to pave the way for accurate sleep regulation and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帅气念梦完成签到 ,获得积分10
2秒前
源圈圈完成签到 ,获得积分10
4秒前
4秒前
pluto应助科研通管家采纳,获得10
4秒前
HCLonely应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
毛豆应助科研通管家采纳,获得10
5秒前
毛豆应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
sll应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
毛豆应助科研通管家采纳,获得10
5秒前
HCLonely应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得30
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
HCLonely应助科研通管家采纳,获得10
6秒前
Billy应助科研通管家采纳,获得30
6秒前
有魅力雁蓉完成签到,获得积分10
8秒前
胡星星完成签到 ,获得积分10
10秒前
星星完成签到,获得积分10
10秒前
小唐完成签到 ,获得积分10
11秒前
13秒前
兜一兜发布了新的文献求助10
13秒前
13秒前
科研发布了新的文献求助10
14秒前
怦怦完成签到,获得积分10
14秒前
dachengzi完成签到 ,获得积分10
16秒前
杳鸢应助coca268采纳,获得20
17秒前
Ava应助laochen采纳,获得10
17秒前
懒癌晚期完成签到,获得积分10
17秒前
18秒前
Trankhaiuy发布了新的文献求助10
18秒前
xjcy应助爱吃蒸蛋采纳,获得10
19秒前
20秒前
Sylvia完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292260
求助须知:如何正确求助?哪些是违规求助? 2928610
关于积分的说明 8437846
捐赠科研通 2600642
什么是DOI,文献DOI怎么找? 1419193
科研通“疑难数据库(出版商)”最低求助积分说明 660251
邀请新用户注册赠送积分活动 642906