Adaptive Critic Learning-Based Optimal Bipartite Consensus for Multiagent Systems With Prescribed Performance

强化学习 二部图 计算机科学 数学优化 有界函数 控制器(灌溉) 标识符 梯度下降 控制理论(社会学) 数学 人工神经网络 人工智能 理论计算机科学 图形 数学分析 生物 程序设计语言 农学 控制(管理)
作者
Lei Yan,Junhe Liu,Guanyu Lai,C. L. Philip Chen,Zongze Wu,Zhi Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tnnls.2024.3379503
摘要

Developing a distributed bipartite optimal consensus scheme while ensuring user-predefined performance is essential in practical applications. Existing approaches to this problem typically require a complex controller structure due to adopting an identifier–actor–critic framework and prescribed performance cannot be guaranteed. In this work, an adaptive critic learning (ACL)-based optimal bipartite consensus scheme is developed to bridge the gap. A newly designed error scaling function, which defines the user-predefined settling time and steady accuracy without relying on the initial conditions, is then integrated into a cost function. The backstepping framework combines the ACL and integral reinforcement learning (IRL) algorithm to develop the adaptive optimal bipartite consensus scheme, which contributes a critic-only controller structure by removing the identifier and actor networks in the existing methods. The adaptive law of the critic network is derived by the gradient descent algorithm and experience replay to minimize the IRL-based residual error. It is shown that a compute-saving learning mechanism can achieve the optimal consensus, and the error variables of the closed-loop system are uniformly ultimately bounded (UUB). Besides, in any bounded initial condition, the evolution of bipartite consensus is limited to a user-prescribed boundary under bounded initial conditions. The illustrative simulation results validate the efficacy of the approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chemis锌醛完成签到,获得积分10
1秒前
1秒前
1秒前
诚心香旋发布了新的文献求助10
2秒前
2秒前
任性访风完成签到,获得积分10
2秒前
传奇3应助稳重向南采纳,获得10
3秒前
kyu完成签到,获得积分10
3秒前
闪闪剑通发布了新的文献求助10
4秒前
4秒前
ele_anor完成签到,获得积分10
5秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
SI发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
一一应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
cocolu应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
tigger完成签到 ,获得积分10
7秒前
杳鸢应助妮妮采纳,获得20
8秒前
8秒前
想摆就摆完成签到,获得积分10
8秒前
9秒前
ddaa完成签到,获得积分10
9秒前
大力完成签到,获得积分10
9秒前
李爱国应助twwm采纳,获得10
11秒前
wanci应助Rrr采纳,获得10
11秒前
武雨寒发布了新的文献求助10
12秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463119
求助须知:如何正确求助?哪些是违规求助? 3056538
关于积分的说明 9052742
捐赠科研通 2746421
什么是DOI,文献DOI怎么找? 1506925
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695791