亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Critic Learning-Based Optimal Bipartite Consensus for Multiagent Systems With Prescribed Performance

强化学习 二部图 计算机科学 数学优化 有界函数 控制器(灌溉) 标识符 梯度下降 控制理论(社会学) 数学 人工神经网络 人工智能 理论计算机科学 图形 数学分析 生物 程序设计语言 农学 控制(管理)
作者
Lei Yan,Junhe Liu,Guanyu Lai,C. L. Philip Chen,Zongze Wu,Zhi Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tnnls.2024.3379503
摘要

Developing a distributed bipartite optimal consensus scheme while ensuring user-predefined performance is essential in practical applications. Existing approaches to this problem typically require a complex controller structure due to adopting an identifier–actor–critic framework and prescribed performance cannot be guaranteed. In this work, an adaptive critic learning (ACL)-based optimal bipartite consensus scheme is developed to bridge the gap. A newly designed error scaling function, which defines the user-predefined settling time and steady accuracy without relying on the initial conditions, is then integrated into a cost function. The backstepping framework combines the ACL and integral reinforcement learning (IRL) algorithm to develop the adaptive optimal bipartite consensus scheme, which contributes a critic-only controller structure by removing the identifier and actor networks in the existing methods. The adaptive law of the critic network is derived by the gradient descent algorithm and experience replay to minimize the IRL-based residual error. It is shown that a compute-saving learning mechanism can achieve the optimal consensus, and the error variables of the closed-loop system are uniformly ultimately bounded (UUB). Besides, in any bounded initial condition, the evolution of bipartite consensus is limited to a user-prescribed boundary under bounded initial conditions. The illustrative simulation results validate the efficacy of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jj发布了新的文献求助30
1秒前
柳代云发布了新的文献求助10
11秒前
sjj完成签到,获得积分10
22秒前
35秒前
Criminology34应助科研通管家采纳,获得10
38秒前
浮游应助科研通管家采纳,获得10
38秒前
42秒前
bkagyin应助lezbj99采纳,获得10
46秒前
紧张的以山完成签到,获得积分10
46秒前
Akim应助lezbj99采纳,获得10
1分钟前
anqi6688完成签到,获得积分10
1分钟前
HUSH完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助anqi6688采纳,获得10
1分钟前
111完成签到 ,获得积分10
2分钟前
科目三应助GPTea采纳,获得10
2分钟前
Augustines完成签到,获得积分10
2分钟前
冷静新烟完成签到,获得积分20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
Magali应助科研通管家采纳,获得30
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得30
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
清脆的飞丹完成签到,获得积分10
2分钟前
冷静新烟发布了新的文献求助10
3分钟前
Krsky完成签到,获得积分10
3分钟前
浮游应助GPTea采纳,获得10
3分钟前
HUSH发布了新的文献求助20
3分钟前
Hugrainbow完成签到,获得积分10
3分钟前
maher完成签到 ,获得积分10
3分钟前
酷波er应助GPTea采纳,获得10
3分钟前
五四三二一完成签到 ,获得积分10
3分钟前
3分钟前
DPH完成签到 ,获得积分10
4分钟前
冷静新烟发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116357
求助须知:如何正确求助?哪些是违规求助? 4323015
关于积分的说明 13469810
捐赠科研通 4155310
什么是DOI,文献DOI怎么找? 2277113
邀请新用户注册赠送积分活动 1278970
关于科研通互助平台的介绍 1217011