Enhancing Carrier Mobility in Monolayer MoS2 Transistors with Process-Induced Strain

材料科学 晶体管 应变工程 单层 电子迁移率 光电子学 半导体 兴奋剂 数码产品 纳米技术 拉曼光谱 柔性电子器件 饱和速度 电气工程 电压 光学 工程类 物理
作者
Yue Zhang,He Zhao,Siyuan Huang,M. Abir Hossain,Arend M. van der Zande
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (19): 12377-12385 被引量:6
标识
DOI:10.1021/acsnano.4c01457
摘要

Two-dimensional electronic materials are a promising candidate for beyond-silicon electronics due to their favorable size scaling of electronic performance. However, a major challenge is the heterogeneous integration of 2D materials with CMOS processes while maintaining their excellent properties. In particular, there is a knowledge gap in how thin film deposition and processes interact with 2D materials to alter their strain and doping, both of which have a drastic impact on device properties. In this study, we demonstrate how to utilize process-induced strain, a common technique extensively applied in the semiconductor industry, to enhance the carrier mobility in 2D material transistors. We systematically varied the tensile strain in monolayer MoS2 transistors by iteratively depositing thin layers of high-stress MgOx stressor. At each thickness, we combined Raman spectroscopy and transport measurements to unravel and correlate the changes in strain and doping within each transistor with their performance. The transistors displayed uniform strain distributions across their channels for tensile strains of up to 0.48 ± 0.05%, at 150 nm of stressor thickness. At higher thicknesses, mechanical instability occurred, leading to nonuniform strains. The transport characteristics systematically varied with strain, with enhancement in electron mobility at a rate of 130 ± 40% per % strain and enhancement of the channel saturation current density of 52 ± 20%. This work showcases how established CMOS technologies can be leveraged to tailor the transport in 2D transistors, accelerating the integration of 2D electronics into a future computing infrastructure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jevon完成签到,获得积分0
1秒前
Ava应助一彤展翅采纳,获得30
1秒前
3秒前
背书强完成签到 ,获得积分10
4秒前
5秒前
柔弱的无心完成签到 ,获得积分10
6秒前
wangn发布了新的文献求助10
6秒前
重要冲发布了新的文献求助10
7秒前
9秒前
春祭发布了新的文献求助10
10秒前
Weiyu完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
15秒前
15秒前
百十余完成签到,获得积分10
16秒前
16秒前
852应助Li采纳,获得10
17秒前
yy2023应助跳跃的摩托采纳,获得10
17秒前
18秒前
19秒前
一彤展翅发布了新的文献求助30
19秒前
20秒前
科目三应助单纯的巧荷采纳,获得10
21秒前
秋秋发布了新的文献求助10
21秒前
22秒前
ying完成签到 ,获得积分10
22秒前
qiandi完成签到,获得积分10
23秒前
Caddie完成签到,获得积分10
23秒前
CodeCraft应助辛勤的之玉采纳,获得10
23秒前
cuber完成签到 ,获得积分10
23秒前
orixero应助筋筋子采纳,获得10
25秒前
Ice_zhao发布了新的文献求助10
26秒前
赵无眠发布了新的文献求助20
27秒前
蓝冰完成签到,获得积分10
28秒前
28秒前
29秒前
paleo-地质完成签到,获得积分10
30秒前
zzz完成签到 ,获得积分10
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239161
求助须知:如何正确求助?哪些是违规求助? 2884482
关于积分的说明 8233834
捐赠科研通 2552477
什么是DOI,文献DOI怎么找? 1380803
科研通“疑难数据库(出版商)”最低求助积分说明 649086
邀请新用户注册赠送积分活动 624817