已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multimodal Feature Fusion Network for Building Extraction With Very High-Resolution Remote Sensing Image and LiDAR Data

激光雷达 遥感 特征提取 计算机科学 人工智能 特征(语言学) 卷积神经网络 传感器融合 计算机视觉 分割 模式识别(心理学) 数据挖掘 地质学 语言学 哲学
作者
Hui Luo,Xibo Feng,Bo Du,Yuxiang Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:5
标识
DOI:10.1109/tgrs.2024.3389110
摘要

Building extraction from remote sensing images is extremely important for urban planning, land-cover change analysis, disaster monitoring and so on. With the growing diversity in building features, shape, and texture, coupled with frequent occurrences of shadowing and occlusion, the use of high-resolution remote sensing image (HRI) alone has limitations in building extraction. Therefore, feature fusion using multisource data has gradually become one of the most popular. However, the unique characteristics and noise issues make it difficult to achieve effective fusion and utilization. So it is very challenging to realize the full fusion of multisource data to achieve complementary advantages. In this paper, we propose an end-to-end multimodal feature fusion building extraction network based on segformer, which utilizes the fusion of HRI and LiDAR data to realize the building extraction. Firstly, we utilize the segformer encoder to break through the limitations of the traditional convolutional neural network with restricted receptive field so as to achieve effective feature extraction of complex building. In addition, we propose a cross-modal feature fusion (CMFF) method utilizing the self-attention mechanism to ensure the fusion of multisource data. In the decoder part, we propose a multi-scale up-sampling decoder (MSUD) strategy to achieve full fusion of multi-level features. As demonstrated by experiments on three datasets, our model shows better performance than several multisource building extraction and semantic segmentation models. The IoU for buildings on the three datasets reach 91.80%, 93.03%, and 84.59%. Subsequent ablation experiments further validate the effectiveness of each strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
得唔闻完成签到 ,获得积分10
3秒前
Cc完成签到 ,获得积分10
6秒前
盆栽完成签到,获得积分10
6秒前
无花果应助蟹老板的crab采纳,获得10
7秒前
10秒前
无语的巨人完成签到 ,获得积分10
11秒前
寂寞的尔丝完成签到 ,获得积分10
11秒前
科目三应助Oaizil采纳,获得30
12秒前
16秒前
英俊的铭应助阿迦采纳,获得10
16秒前
充电宝应助蜡笔小昕采纳,获得10
18秒前
tyun完成签到 ,获得积分10
18秒前
hui完成签到 ,获得积分10
20秒前
20秒前
董小鱼应助黑米粥采纳,获得10
21秒前
小二郎应助黑米粥采纳,获得10
21秒前
搜集达人应助黑米粥采纳,获得10
21秒前
田様应助黑米粥采纳,获得10
21秒前
搜集达人应助黑米粥采纳,获得30
21秒前
深情安青应助黑米粥采纳,获得10
21秒前
竹筏过海应助黑米粥采纳,获得30
21秒前
刘浩发布了新的文献求助30
22秒前
23秒前
星辰大海应助科研通管家采纳,获得10
25秒前
pluto应助科研通管家采纳,获得10
25秒前
pluto应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
pluto应助科研通管家采纳,获得10
25秒前
ccm应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
25秒前
虚幻笑晴发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564710
关于积分的说明 14296681
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511