A Multimodal Feature Fusion Network for Building Extraction With Very High-Resolution Remote Sensing Image and LiDAR Data

激光雷达 遥感 特征提取 计算机科学 人工智能 特征(语言学) 卷积神经网络 传感器融合 计算机视觉 分割 模式识别(心理学) 数据挖掘 地质学 语言学 哲学
作者
Hui Luo,Xibo Feng,Bo Du,Yuxiang Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:5
标识
DOI:10.1109/tgrs.2024.3389110
摘要

Building extraction from remote sensing images is extremely important for urban planning, land-cover change analysis, disaster monitoring and so on. With the growing diversity in building features, shape, and texture, coupled with frequent occurrences of shadowing and occlusion, the use of high-resolution remote sensing image (HRI) alone has limitations in building extraction. Therefore, feature fusion using multisource data has gradually become one of the most popular. However, the unique characteristics and noise issues make it difficult to achieve effective fusion and utilization. So it is very challenging to realize the full fusion of multisource data to achieve complementary advantages. In this paper, we propose an end-to-end multimodal feature fusion building extraction network based on segformer, which utilizes the fusion of HRI and LiDAR data to realize the building extraction. Firstly, we utilize the segformer encoder to break through the limitations of the traditional convolutional neural network with restricted receptive field so as to achieve effective feature extraction of complex building. In addition, we propose a cross-modal feature fusion (CMFF) method utilizing the self-attention mechanism to ensure the fusion of multisource data. In the decoder part, we propose a multi-scale up-sampling decoder (MSUD) strategy to achieve full fusion of multi-level features. As demonstrated by experiments on three datasets, our model shows better performance than several multisource building extraction and semantic segmentation models. The IoU for buildings on the three datasets reach 91.80%, 93.03%, and 84.59%. Subsequent ablation experiments further validate the effectiveness of each strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助moxin采纳,获得10
刚刚
刚刚
1秒前
Jiayi完成签到 ,获得积分10
2秒前
小希完成签到,获得积分10
3秒前
3秒前
隐形曼青应助阿九采纳,获得10
4秒前
深情安青应助杨玄采纳,获得10
4秒前
简化为完成签到,获得积分10
4秒前
J_C_Van完成签到,获得积分10
5秒前
橘子树完成签到,获得积分10
6秒前
玛斯特尔完成签到,获得积分10
6秒前
hearz发布了新的文献求助10
6秒前
ZSH完成签到,获得积分10
7秒前
Litoivda完成签到 ,获得积分10
9秒前
暮雨完成签到,获得积分10
10秒前
DOGDAD完成签到,获得积分10
12秒前
英俊的铭应助温柔翰采纳,获得10
12秒前
英姑应助薛建伟采纳,获得10
12秒前
如云完成签到,获得积分20
13秒前
你说的完成签到 ,获得积分10
13秒前
Jasper应助大脸猫4811采纳,获得10
14秒前
hearz完成签到,获得积分10
15秒前
16秒前
P2JY完成签到,获得积分10
16秒前
leiiiiiiii完成签到,获得积分10
16秒前
Bake完成签到 ,获得积分10
18秒前
19秒前
yuan完成签到,获得积分10
19秒前
论文多多完成签到,获得积分10
20秒前
20秒前
Acid完成签到 ,获得积分10
20秒前
1111111111111发布了新的文献求助10
21秒前
linlinyilulvdeng完成签到,获得积分10
21秒前
斯文败类应助历史雨采纳,获得10
22秒前
FashionBoy应助吃个大笼包采纳,获得10
24秒前
海阔天空发布了新的文献求助10
25秒前
薛建伟发布了新的文献求助10
26秒前
高高代珊发布了新的文献求助10
27秒前
害羞的墨镜完成签到,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066