A Multimodal Feature Fusion Network for Building Extraction With Very High-Resolution Remote Sensing Image and LiDAR Data

激光雷达 遥感 特征提取 计算机科学 人工智能 特征(语言学) 卷积神经网络 传感器融合 计算机视觉 分割 模式识别(心理学) 数据挖掘 地质学 语言学 哲学
作者
Hui Luo,Xibo Feng,Bo Du,Yuxiang Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:5
标识
DOI:10.1109/tgrs.2024.3389110
摘要

Building extraction from remote sensing images is extremely important for urban planning, land-cover change analysis, disaster monitoring and so on. With the growing diversity in building features, shape, and texture, coupled with frequent occurrences of shadowing and occlusion, the use of high-resolution remote sensing image (HRI) alone has limitations in building extraction. Therefore, feature fusion using multisource data has gradually become one of the most popular. However, the unique characteristics and noise issues make it difficult to achieve effective fusion and utilization. So it is very challenging to realize the full fusion of multisource data to achieve complementary advantages. In this paper, we propose an end-to-end multimodal feature fusion building extraction network based on segformer, which utilizes the fusion of HRI and LiDAR data to realize the building extraction. Firstly, we utilize the segformer encoder to break through the limitations of the traditional convolutional neural network with restricted receptive field so as to achieve effective feature extraction of complex building. In addition, we propose a cross-modal feature fusion (CMFF) method utilizing the self-attention mechanism to ensure the fusion of multisource data. In the decoder part, we propose a multi-scale up-sampling decoder (MSUD) strategy to achieve full fusion of multi-level features. As demonstrated by experiments on three datasets, our model shows better performance than several multisource building extraction and semantic segmentation models. The IoU for buildings on the three datasets reach 91.80%, 93.03%, and 84.59%. Subsequent ablation experiments further validate the effectiveness of each strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳昭广发布了新的文献求助10
刚刚
xiaozhang发布了新的文献求助10
1秒前
Ava应助我很好你呢采纳,获得10
2秒前
wxq发布了新的文献求助10
2秒前
吃货发布了新的文献求助10
2秒前
HGFJGK发布了新的文献求助10
2秒前
2秒前
酷波er应助斯人采纳,获得30
3秒前
3秒前
笑点解析应助solar采纳,获得10
3秒前
剑指天涯完成签到,获得积分10
4秒前
打小就帅完成签到,获得积分10
4秒前
小菜鸟001应助meng采纳,获得10
4秒前
4秒前
5秒前
Kenny发布了新的文献求助10
8秒前
yang发布了新的文献求助10
8秒前
8秒前
lt_zyk完成签到,获得积分10
8秒前
嗯哼应助熬夜猫采纳,获得50
9秒前
9秒前
暄暄发布了新的文献求助10
9秒前
9秒前
Eunice完成签到,获得积分20
9秒前
123456发布了新的文献求助10
10秒前
10秒前
ding应助吃货采纳,获得10
10秒前
迅速自行车应助飞羽采纳,获得10
11秒前
清修发布了新的文献求助10
11秒前
阳昭广完成签到,获得积分10
12秒前
anesthesia发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
小sl发布了新的文献求助10
14秒前
传奇3应助御风采纳,获得10
14秒前
xl²-B发布了新的文献求助10
14秒前
colorful发布了新的文献求助30
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469240
求助须知:如何正确求助?哪些是违规求助? 3062268
关于积分的说明 9078513
捐赠科研通 2752652
什么是DOI,文献DOI怎么找? 1510516
科研通“疑难数据库(出版商)”最低求助积分说明 697909
邀请新用户注册赠送积分活动 697783