锂(药物)
材料科学
离子
纳米技术
工程物理
化学
工程类
心理学
有机化学
精神科
作者
Dinesh Sunkari,Kalim Deshmukh,Subhasree Panda,S. K. Khadheer Pasha
标识
DOI:10.1016/j.est.2024.112017
摘要
Two-dimensional (2D) nanomaterials, particularly MXenes, are hailed for their potential in energy storage applications due to their high surface area, exceptional mechanical strength, higher electrical conductivity, outstanding magnetic, thermal, and physicochemical properties along with magnificent optical and plasmonic characteristics. Even MXenes show formidable qualities such as layer-structured architecture and remarkable hydrophilicity which make them highly suitable for use in Lithium-ion batteries (LIBs) anodes and Lithium-Sulphur batteries (LSBs) cathodes. However, MXenes often face restacking issues during cycling, limiting their Li+ storage capacity. To address this, strategies such as widening interfacial width, modifying functional groups, and synthesizing few-layered MXenes have been proposed. Composite materials incorporating MXenes aim to regulate restacking and improve electrical contact loss of high-capacity anode materials like Silicon (Si), metal oxides (MOs), and transition metal dichalcogenides (TMDs) in LIBs. Additionally, modest MXene concentrations enhance the performance of LIBs and address conductivity issues in LSBs caused by Sulphur breakdown and Lithium polysulfides (LiPSs) shuttle. Broadly, MXenes have the prospects to tackle the major hurdles facing cutting-edge energy storage technologies. Keeping in view, the above features of MXenes, the first section of this article reviews different synthesis approaches of MXenes and their extraordinary properties. The second section elucidates the developments of MXenes and MXene-premised anode materials for LIBs and cathode materials for LSBs. In the last portion, the critical challenges of MXene-focused materials for LIBs and LSBs and numerous decisive future perspectives are highlighted and concisely discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI