Highly-efficient selection of interferon gamma-specific aptamers and development of a sensitive fiber-optic evanescent wave aptasensor

适体 消散波 光纤 选择(遗传算法) 纳米技术 材料科学 纤维 光学 光电子学 物理 计算机科学 生物 分子生物学 复合材料 人工智能
作者
Liye Zhao,Yingai Yin,Shuqi Xiao,Yuanbin Wu,Xiaojing Ding,Jiefang Sun,Dongdong Wu,Bing Shao,Yiyang Dong
出处
期刊:Microchemical Journal [Elsevier]
卷期号:202: 110829-110829
标识
DOI:10.1016/j.microc.2024.110829
摘要

Interferon-gamma (IFN-γ) is a critical indicator of the immune response to many infections and diseases. Identifying excellent IFN-γ recognition molecules is of great significance for the early diagnosis and treatment of diseases. Herein, anti-IFN-γ aptamers were selected based on capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX) and their affinities were characterized by the biolayer interferometry (BLI) assay. A rational molecular docking strategy was utilized to predict precisely the binding behavior between aptamer and IFN-γ and remove redundant bases of original sequence. Therefore, aptamer IFNG-8 with the highest affinity can be efficiently identified within only three rounds and the truncated aptamer IFNG-8 T with comparable affinity is eventually obtained. With IFNG-8 T as the detection probe, a fiber-optic evanescent wave aptasensor is constructed for the detection of IFN-γ, which shows a wide linear range from 0.1 to 10000 pM and a low limit of detection (LOD) of 0.0718 pM. The developed aptasensor exhibits high selectivity and can be utilized for IFN-γ detection in human serum samples with good recoveries. In summary, the truncated aptamer can serve as a novel optional transducing element and the developed aptasensor provides an innovative methodology for detection of IFN-γ in trace amount
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花粉过敏发布了新的文献求助10
刚刚
Qiang发布了新的文献求助10
刚刚
优雅的雪一关注了科研通微信公众号
刚刚
hehe应助酷炫翠桃采纳,获得10
刚刚
kangyan完成签到,获得积分20
刚刚
qin希望应助江停采纳,获得10
3秒前
kangyan发布了新的文献求助10
3秒前
不配.应助勤恳的饭饭采纳,获得20
3秒前
moon完成签到,获得积分20
4秒前
华仔应助酚酞v采纳,获得10
4秒前
4秒前
Singularity应助haowu采纳,获得30
4秒前
kkkkkkk_应助haowu采纳,获得10
4秒前
CipherSage应助haowu采纳,获得10
4秒前
SciGPT应助haowu采纳,获得10
4秒前
科目三应助haowu采纳,获得10
4秒前
周老二完成签到 ,获得积分10
6秒前
乐乐应助Aki采纳,获得10
6秒前
郁金香没有你的浴巾香完成签到,获得积分10
6秒前
打打应助萤火虫采纳,获得10
7秒前
8秒前
王顺喜完成签到,获得积分10
8秒前
慕青应助星空_采纳,获得20
9秒前
FashionBoy应助wenze采纳,获得10
10秒前
脆香可丽饼完成签到,获得积分10
10秒前
11秒前
花粉过敏完成签到,获得积分10
11秒前
hmm完成签到,获得积分20
12秒前
zyx发布了新的文献求助10
12秒前
13秒前
14秒前
Estella完成签到,获得积分10
15秒前
缪格完成签到,获得积分10
15秒前
JamesPei应助Three_one采纳,获得10
16秒前
wanci应助无欲无求傻傻采纳,获得10
16秒前
NexusExplorer应助老猪佩奇采纳,获得10
16秒前
16秒前
睡教早祈两年半完成签到,获得积分10
17秒前
17秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124390
求助须知:如何正确求助?哪些是违规求助? 2774743
关于积分的说明 7723567
捐赠科研通 2430180
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622006
版权声明 600297