Dynamic and Adaptive Self-Training for Semi-Supervised Remote Sensing Image Semantic Segmentation

计算机科学 培训(气象学) 图像分割 分割 人工智能 计算机视觉 遥感 图像(数学) 模式识别(心理学) 地质学 物理 气象学
作者
Jidong Jin,Wanxuan Lu,Hongfeng Yu,Xuee Rong,Xian Sun,Yirong Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3407142
摘要

Remote sensing technology has made remarkable progress, providing a wealth of data for various applications, such as ecological conservation and urban planning. However, the meticulous annotation of this data is labor-intensive, leading to a shortage of labeled data, particularly in tasks like semantic segmentation. Semi-supervised methods, combining consistency regularization with self-training, offer a solution to efficiently utilize labeled and unlabeled data. However, these methods encounter challenges due to imbalanced data ratios. To tackle these challenges, we introduce a self-training approach named DAST ( D ynamic and A daptive S elf- T raining), which is combined with dynamic pseudo-label sampling, distribution matching, and adaptive threshold updating. Dynamic pseudo-label sampling is tailored to address the issue of class distribution imbalance by giving priority to classes with fewer samples. Meanwhile, distribution matching and adaptive threshold updating aim to reduce distribution disparities by adjusting model predictions across augmented images within the framework of consistency regularization, ensuring they align with the actual data distribution. Experiment results on the Potsdam and iSAID datasets demonstrate that DAST effectively balances class distribution, aligns model predictions with data distribution, and stabilizes pseudo-labels, leading to state-of-the-art performance on both datasets. These findings highlight the potential of DAST in overcoming the challenges associated with significant disparities in labeled-to-unlabeled data ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助ztq417采纳,获得10
1秒前
温乘云发布了新的文献求助10
1秒前
璨澄发布了新的文献求助10
1秒前
1秒前
Li发布了新的文献求助10
2秒前
CARL完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
包容的雅青完成签到,获得积分10
6秒前
温乘云完成签到,获得积分10
7秒前
科研通AI5应助酷酷语兰采纳,获得10
7秒前
沉醉夜色完成签到,获得积分10
8秒前
9秒前
9秒前
希望天下0贩的0应助hao采纳,获得10
9秒前
整齐荟发布了新的文献求助10
10秒前
筱菱完成签到,获得积分10
10秒前
10秒前
酷波er应助好旺采纳,获得10
10秒前
leanne发布了新的文献求助10
10秒前
桐桐应助地表飞猪采纳,获得10
10秒前
12秒前
13秒前
15秒前
15秒前
psycho发布了新的文献求助10
16秒前
lihuahui发布了新的文献求助10
16秒前
17秒前
Lucas应助橙汁采纳,获得10
17秒前
团团发布了新的文献求助10
18秒前
18秒前
上官若男应助整齐荟采纳,获得10
18秒前
yu应助隐形皮卡丘采纳,获得10
20秒前
ED应助隐形皮卡丘采纳,获得30
20秒前
量子星尘发布了新的文献求助10
20秒前
酷酷语兰发布了新的文献求助10
21秒前
博ge发布了新的文献求助10
22秒前
酷波er应助lihuahui采纳,获得10
22秒前
好旺发布了新的文献求助10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980299
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220587
捐赠科研通 3261687
什么是DOI,文献DOI怎么找? 1800886
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807249