Dynamic and Adaptive Self-Training for Semi-Supervised Remote Sensing Image Semantic Segmentation

计算机科学 培训(气象学) 图像分割 分割 人工智能 计算机视觉 遥感 图像(数学) 模式识别(心理学) 地质学 物理 气象学
作者
Jidong Jin,Wanxuan Lu,Hongfeng Yu,Xuee Rong,Xian Sun,Yirong Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3407142
摘要

Remote sensing technology has made remarkable progress, providing a wealth of data for various applications, such as ecological conservation and urban planning. However, the meticulous annotation of this data is labor-intensive, leading to a shortage of labeled data, particularly in tasks like semantic segmentation. Semi-supervised methods, combining consistency regularization with self-training, offer a solution to efficiently utilize labeled and unlabeled data. However, these methods encounter challenges due to imbalanced data ratios. To tackle these challenges, we introduce a self-training approach named DAST ( D ynamic and A daptive S elf- T raining), which is combined with dynamic pseudo-label sampling, distribution matching, and adaptive threshold updating. Dynamic pseudo-label sampling is tailored to address the issue of class distribution imbalance by giving priority to classes with fewer samples. Meanwhile, distribution matching and adaptive threshold updating aim to reduce distribution disparities by adjusting model predictions across augmented images within the framework of consistency regularization, ensuring they align with the actual data distribution. Experiment results on the Potsdam and iSAID datasets demonstrate that DAST effectively balances class distribution, aligns model predictions with data distribution, and stabilizes pseudo-labels, leading to state-of-the-art performance on both datasets. These findings highlight the potential of DAST in overcoming the challenges associated with significant disparities in labeled-to-unlabeled data ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
liuliu完成签到 ,获得积分10
3秒前
阿巴阿巴小聂完成签到,获得积分10
4秒前
GT完成签到,获得积分10
4秒前
淡淡菠萝发布了新的文献求助10
5秒前
5秒前
脑洞疼应助azj采纳,获得10
5秒前
出水的芙蓉完成签到,获得积分10
6秒前
cccc发布了新的文献求助10
7秒前
852应助qqy采纳,获得10
8秒前
9秒前
moffy完成签到,获得积分10
10秒前
了晨发布了新的文献求助10
10秒前
Kaelin完成签到,获得积分20
11秒前
11秒前
12秒前
xiubo128完成签到 ,获得积分10
12秒前
14秒前
14秒前
小蘑菇应助伴着星光归来采纳,获得10
15秒前
清新的问枫完成签到,获得积分10
15秒前
Yi发布了新的文献求助10
15秒前
wzhang完成签到,获得积分10
16秒前
17秒前
17秒前
19秒前
19秒前
20秒前
风趣的芙发布了新的文献求助10
20秒前
21秒前
8Qq1NV完成签到,获得积分10
21秒前
22秒前
dida发布了新的文献求助10
22秒前
azj发布了新的文献求助10
23秒前
李健应助勤奋花瓣采纳,获得10
23秒前
852应助饱满南松采纳,获得10
23秒前
hhhhhhh发布了新的文献求助10
24秒前
啦啦啦完成签到 ,获得积分20
24秒前
turbo完成签到,获得积分10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140698
求助须知:如何正确求助?哪些是违规求助? 2791571
关于积分的说明 7799545
捐赠科研通 2447907
什么是DOI,文献DOI怎么找? 1302182
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194