热电效应
材料科学
塞贝克系数
热电材料
热导率
密度泛函理论
碲化物
带隙
凝聚态物理
光电子学
纳米技术
热力学
复合材料
计算化学
冶金
化学
物理
作者
A.K. Singh,Rajeev Karthik,P R Sreeram,Tarun Kumar Kundu,Chandra Sekhar Tiwary
出处
期刊:Small
[Wiley]
日期:2024-06-14
被引量:2
标识
DOI:10.1002/smll.202403728
摘要
A lot of experimental studies are conducted on theoretically predicted thermoelectric 2D materials. Such materials can pave the way for charging ultra-thin electronic devices, self-charging wearable devices, and medical implants. This study systematically explores the thermoelectric attributes of bulk and 2D nanostructured Tin Telluride (SnTe), employing experimental investigations and theoretical analyses based on semiclassical Boltzmann transport theory. The bulk SnTe is synthesized through flame melting, while the 2D SnTe is produced via liquid phase exfoliation. The comprehensive assessment of thermoelectric properties integrated experimental measurements utilizing a Physical Property Measurement System and theoretical calculations from the BoltzTraP code. Experimental thermoelectric studies show a high ZT of 0.17 for 2D SnTe when compared to bulk (0.005) at room temperature. This rise in ZT is due to the high Seebeck coefficient and low thermal conductivity of nanostructured 2D SnTe. Density functional theory (DFT) studies reveal the contribution of the density of states (DOS) and energy bandgap in enhancing the Seebeck coefficient and lowering thermal conductivity by interface scattering.
科研通智能强力驱动
Strongly Powered by AbleSci AI