Large language models for life cycle assessments: Opportunities, challenges, and risks

持续性 生命周期评估 包裹体(矿物) 过程(计算) 风险分析(工程) 可持续发展 计算机科学 生产(经济) 业务 心理学 经济 政治学 宏观经济学 操作系统 法学 生物 社会心理学 生态学
作者
Nathan Preuss,Abdulelah S. Alshehri,Fengqi You
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:466: 142824-142824 被引量:5
标识
DOI:10.1016/j.jclepro.2024.142824
摘要

Because sustainability remains a wicked problem, more sophisticated tools need to be applied to identify better solutions in a more efficient manner and align with the 11th, 12th, and 13th sustainable development goals: sustainable cities and communities, responsible consumption and production, and climate action. To ease the burdens of conducting sustainability studies, especially life cycle assessments (LCA), practitioners may consider integrating large language models (LLM) into LCAs. This emerging application may offer some advantages due to the capability of these models to generate and process text quickly and efficiently, decreasing the time it takes to complete an LCA and increasing the accessibility of LCAs. In this perspective, we assess the ability of LLMs to complete LCA tasks and encourage the LCA community to study the potential strategies for enhancing the integration of LLMs in LCA methodologies and collaborate to develop standards for responsible use. Because of these advantages, LLMs show promise for life cycle inventory data collection and interpreting the life cycle impact assessment. Challenges arise primarily from the inclusion of hallucinations in the content generated by the LLM, which can be mitigated if the LCA practitioner uses prompt engineering techniques. Moreover, the risk that models cannot take responsibility for generated content can be ameliorated by having the LCA practitioner carefully review the LLM output and take responsibility for decisions made based on the generated content. So long as appropriate steps are taken to overcome the challenges and risks of using of LLMs for LCA, the opportunities presented by integrating the generative AI models can streamline the LCA process and result in significant benefits for the LCA practitioner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
塞尔达完成签到,获得积分10
刚刚
锦5发布了新的文献求助10
1秒前
2秒前
2秒前
大方的若山完成签到,获得积分10
3秒前
Liu完成签到 ,获得积分10
3秒前
香蕉觅云应助Qianbaor68采纳,获得10
3秒前
勤劳飞松完成签到,获得积分10
3秒前
yinger1984完成签到,获得积分10
3秒前
冷静的夏槐完成签到,获得积分10
4秒前
MSYzack发布了新的文献求助10
4秒前
曾泳钧完成签到,获得积分10
7秒前
7秒前
cocopepsi完成签到,获得积分10
7秒前
菘蓝泽蓼完成签到,获得积分10
7秒前
Llllll完成签到,获得积分10
8秒前
_Forelsket_完成签到,获得积分10
8秒前
YiWei完成签到 ,获得积分10
8秒前
852应助火锅采纳,获得10
8秒前
后来完成签到,获得积分10
9秒前
eazin完成签到 ,获得积分10
9秒前
牢鱼发布了新的文献求助10
10秒前
Silence完成签到,获得积分0
11秒前
临诗完成签到,获得积分10
11秒前
所所应助666采纳,获得10
12秒前
14秒前
月不远走完成签到,获得积分10
14秒前
英俊的铭应助时尚羿采纳,获得10
15秒前
老魏完成签到 ,获得积分10
16秒前
天天快乐应助yy采纳,获得10
16秒前
舒服的初蓝完成签到,获得积分10
16秒前
不安的凝阳完成签到,获得积分10
16秒前
独特冰安发布了新的文献求助10
18秒前
小耿完成签到 ,获得积分10
18秒前
19秒前
fate311完成签到,获得积分10
22秒前
活ni的pig完成签到 ,获得积分10
24秒前
IMkily完成签到,获得积分10
24秒前
12345678发布了新的文献求助10
25秒前
Benjamin完成签到 ,获得积分10
25秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709365
求助须知:如何正确求助?哪些是违规求助? 3257426
关于积分的说明 9905005
捐赠科研通 2970326
什么是DOI,文献DOI怎么找? 1629167
邀请新用户注册赠送积分活动 772475
科研通“疑难数据库(出版商)”最低求助积分说明 743850