多糖
马尾藻
褐藻糖胶
化学
表征(材料科学)
植物
生物
生物化学
纳米技术
材料科学
藻类
作者
Qinbing Xue,Bing Wang,Jie Feng,Chaoyu Li,Miao Yu,Zhao Yan,Qi Zheng
标识
DOI:10.1016/j.ijbiomac.2024.132497
摘要
To alleviate the adverse effects of chemotherapy and bolster immune function, a novel polysaccharide derived from Sargassum fusiforme named as SFP-αII. The structural composition of SFP-αII predominantly consisted of guluronic and mannuronic acids in a molar ratio of 33.8:66.2, with an average molecular weight of 16.5 kDa. Its structure was primarily characterized by →4)-α-GulA-(1 → and →4)-β-ManA-(1 → linkages confirmed by FT-IR, methylation, and NMR analyses. The absence of a triple-helix structure was in SFP-αII was confirmed using circular dichroism and Congo red dye assays. The dimensions varied with lengths ranging from 20 nm up to 3 μm revealed by atomic force microscopy (AFM). SFP-αII has been found to enhance immunomodulatory activity in cyclophosphamide (CTX)-induced immunosuppressed mice. This was evidenced by improvements in immune organ indices, cytokine levels, and the release of nitric oxide (NO). Specifically, SFP-αII mitigated immunosuppression by upregulating the secretion of IL-1β (167.3 %) and TNF-α (227.1 %) at a dose of 400 mg/kg, compared with the CTX group in macrophages. Ultimately, SFP-αII may serve as a mechanism for immune enhancement through modulation of TLR4-mediated NF-κB and MAPK signaling pathways. This integration of traditional Chinese and Western medicine, leveraging SFP-αII as a potential functional food could be pivotal in alleviating immunosuppressive side effects in CTX treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI