亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT

人工智能 模态(人机交互) 计算机科学 深度学习 衰减校正 卷积神经网络 单光子发射计算机断层摄影术 特征(语言学) 图像配准 Spect成像 计算机视觉 图像融合 模式识别(心理学) 发射计算机断层扫描 断层摄影术 核医学 正电子发射断层摄影术 医学 放射科 图像(数学) 哲学 语言学
作者
Xiongchao Chen,Bo Zhou,Huidong Xie,Xueqi Guo,Jiazhen Zhang,James S. Duncan,Edward J. Miller,Albert J. Sinusas,John A. Onofrey,Chi Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102840-102840 被引量:9
标识
DOI:10.1016/j.media.2023.102840
摘要

Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. Attenuation maps (μ-maps) derived from computed tomography (CT) are utilized for attenuation correction (AC) to improve the diagnostic accuracy of cardiac SPECT. However, in clinical practice, SPECT and CT scans are acquired sequentially, potentially inducing misregistration between the two images and further producing AC artifacts. Conventional intensity-based registration methods show poor performance in the cross-modality registration of SPECT and CT-derived μ-maps since the two imaging modalities might present totally different intensity patterns. Deep learning has shown great potential in medical imaging registration. However, existing deep learning strategies for medical image registration encoded the input images by simply concatenating the feature maps of different convolutional layers, which might not fully extract or fuse the input information. In addition, deep-learning-based cross-modality registration of cardiac SPECT and CT-derived μ-maps has not been investigated before. In this paper, we propose a novel Dual-Channel Squeeze-Fusion-Excitation (DuSFE) co-attention module for the cross-modality rigid registration of cardiac SPECT and CT-derived μ-maps. DuSFE is designed based on the co-attention mechanism of two cross-connected input data streams. The channel-wise or spatial features of SPECT and μ-maps are jointly encoded, fused, and recalibrated in the DuSFE module. DuSFE can be flexibly embedded at multiple convolutional layers to enable gradual feature fusion in different spatial dimensions. Our studies using clinical patient MPI studies demonstrated that the DuSFE-embedded neural network generated significantly lower registration errors and more accurate AC SPECT images than existing methods. We also showed that the DuSFE-embedded network did not over-correct or degrade the registration performance of motion-free cases. The source code of this work is available at https://github.com/XiongchaoChen/DuSFE_CrossRegistration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chuhaner完成签到,获得积分20
4秒前
Nextf1sh发布了新的文献求助10
5秒前
陶醉的难破完成签到,获得积分10
6秒前
隐形曼青应助Nextf1sh采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
24秒前
27秒前
李爱国应助文章多多采纳,获得10
28秒前
Benhnhk21完成签到,获得积分10
28秒前
1746435297发布了新的文献求助10
34秒前
macleod发布了新的文献求助10
1分钟前
小灰灰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
circlez19完成签到 ,获得积分10
1分钟前
千早爱音完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
1746435297完成签到,获得积分20
2分钟前
1746435297关注了科研通微信公众号
2分钟前
李爱国应助汤露豪采纳,获得10
2分钟前
xtheuv发布了新的文献求助10
2分钟前
2分钟前
汤露豪发布了新的文献求助10
2分钟前
xtheuv完成签到,获得积分20
3分钟前
深情安青应助1746435297采纳,获得10
3分钟前
kx完成签到 ,获得积分10
3分钟前
sunfield2014完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639622
求助须知:如何正确求助?哪些是违规求助? 4749297
关于积分的说明 15006893
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563858
邀请新用户注册赠送积分活动 1522782
关于科研通互助平台的介绍 1482480