DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT

人工智能 模态(人机交互) 计算机科学 深度学习 衰减校正 卷积神经网络 单光子发射计算机断层摄影术 特征(语言学) 图像配准 Spect成像 计算机视觉 图像融合 模式识别(心理学) 发射计算机断层扫描 断层摄影术 核医学 正电子发射断层摄影术 医学 放射科 图像(数学) 哲学 语言学
作者
Xiongchao Chen,Bo Zhou,Huidong Xie,Xueqi Guo,Jiazhen Zhang,James S. Duncan,Edward J. Miller,Albert J. Sinusas,John A. Onofrey,Chi Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:88: 102840-102840 被引量:9
标识
DOI:10.1016/j.media.2023.102840
摘要

Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. Attenuation maps (μ-maps) derived from computed tomography (CT) are utilized for attenuation correction (AC) to improve the diagnostic accuracy of cardiac SPECT. However, in clinical practice, SPECT and CT scans are acquired sequentially, potentially inducing misregistration between the two images and further producing AC artifacts. Conventional intensity-based registration methods show poor performance in the cross-modality registration of SPECT and CT-derived μ-maps since the two imaging modalities might present totally different intensity patterns. Deep learning has shown great potential in medical imaging registration. However, existing deep learning strategies for medical image registration encoded the input images by simply concatenating the feature maps of different convolutional layers, which might not fully extract or fuse the input information. In addition, deep-learning-based cross-modality registration of cardiac SPECT and CT-derived μ-maps has not been investigated before. In this paper, we propose a novel Dual-Channel Squeeze-Fusion-Excitation (DuSFE) co-attention module for the cross-modality rigid registration of cardiac SPECT and CT-derived μ-maps. DuSFE is designed based on the co-attention mechanism of two cross-connected input data streams. The channel-wise or spatial features of SPECT and μ-maps are jointly encoded, fused, and recalibrated in the DuSFE module. DuSFE can be flexibly embedded at multiple convolutional layers to enable gradual feature fusion in different spatial dimensions. Our studies using clinical patient MPI studies demonstrated that the DuSFE-embedded neural network generated significantly lower registration errors and more accurate AC SPECT images than existing methods. We also showed that the DuSFE-embedded network did not over-correct or degrade the registration performance of motion-free cases. The source code of this work is available at https://github.com/XiongchaoChen/DuSFE_CrossRegistration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
帅气的沧海完成签到 ,获得积分10
刚刚
逆熵完成签到,获得积分10
1秒前
修好世界完成签到,获得积分10
1秒前
KOBE94FU完成签到,获得积分10
1秒前
一口吃掉橘子完成签到,获得积分10
1秒前
土亢土亢土应助健康富裕采纳,获得10
2秒前
漂亮夏兰完成签到 ,获得积分10
2秒前
4秒前
Xx完成签到 ,获得积分10
4秒前
忐忑的远山完成签到,获得积分10
5秒前
淡定的忆山完成签到 ,获得积分10
5秒前
大成子完成签到,获得积分10
5秒前
ding完成签到,获得积分10
6秒前
壮观采文给壮观采文的求助进行了留言
6秒前
drbrianlau完成签到,获得积分10
6秒前
阿巴阿巴完成签到,获得积分10
7秒前
活力的小猫咪完成签到 ,获得积分10
7秒前
LegendThree完成签到,获得积分10
7秒前
Zhangll完成签到,获得积分10
8秒前
Franklin给Franklin的求助进行了留言
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
明亮白筠完成签到,获得积分10
10秒前
11秒前
阿V完成签到,获得积分10
12秒前
CL完成签到,获得积分10
12秒前
maizencrna完成签到,获得积分10
13秒前
蒲公英完成签到,获得积分20
13秒前
东十八完成签到 ,获得积分10
13秒前
蒋50完成签到,获得积分10
13秒前
震动的戒指完成签到 ,获得积分10
14秒前
算命的完成签到,获得积分10
15秒前
隔壁巷子里的劉完成签到 ,获得积分10
15秒前
研友_nPb9e8完成签到,获得积分10
16秒前
科研通AI2S应助蒲公英采纳,获得10
17秒前
shawn_89完成签到,获得积分10
17秒前
润润轩轩完成签到 ,获得积分10
17秒前
18秒前
哎呀完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027