DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT

人工智能 模态(人机交互) 计算机科学 深度学习 衰减校正 卷积神经网络 单光子发射计算机断层摄影术 特征(语言学) 图像配准 Spect成像 计算机视觉 图像融合 模式识别(心理学) 发射计算机断层扫描 断层摄影术 核医学 正电子发射断层摄影术 医学 放射科 图像(数学) 哲学 语言学
作者
Xiongchao Chen,Bo Zhou,Huidong Xie,Xueqi Guo,Jiazhen Zhang,James S. Duncan,Edward J. Miller,Albert J. Sinusas,John A. Onofrey,Chi Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102840-102840 被引量:9
标识
DOI:10.1016/j.media.2023.102840
摘要

Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. Attenuation maps (μ-maps) derived from computed tomography (CT) are utilized for attenuation correction (AC) to improve the diagnostic accuracy of cardiac SPECT. However, in clinical practice, SPECT and CT scans are acquired sequentially, potentially inducing misregistration between the two images and further producing AC artifacts. Conventional intensity-based registration methods show poor performance in the cross-modality registration of SPECT and CT-derived μ-maps since the two imaging modalities might present totally different intensity patterns. Deep learning has shown great potential in medical imaging registration. However, existing deep learning strategies for medical image registration encoded the input images by simply concatenating the feature maps of different convolutional layers, which might not fully extract or fuse the input information. In addition, deep-learning-based cross-modality registration of cardiac SPECT and CT-derived μ-maps has not been investigated before. In this paper, we propose a novel Dual-Channel Squeeze-Fusion-Excitation (DuSFE) co-attention module for the cross-modality rigid registration of cardiac SPECT and CT-derived μ-maps. DuSFE is designed based on the co-attention mechanism of two cross-connected input data streams. The channel-wise or spatial features of SPECT and μ-maps are jointly encoded, fused, and recalibrated in the DuSFE module. DuSFE can be flexibly embedded at multiple convolutional layers to enable gradual feature fusion in different spatial dimensions. Our studies using clinical patient MPI studies demonstrated that the DuSFE-embedded neural network generated significantly lower registration errors and more accurate AC SPECT images than existing methods. We also showed that the DuSFE-embedded network did not over-correct or degrade the registration performance of motion-free cases. The source code of this work is available at https://github.com/XiongchaoChen/DuSFE_CrossRegistration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smilesu发布了新的文献求助10
刚刚
creek1110发布了新的文献求助10
1秒前
沫沫发布了新的文献求助30
1秒前
gaijiaofanv发布了新的文献求助10
2秒前
Yannah完成签到,获得积分10
2秒前
小马甲应助cxf采纳,获得10
2秒前
刘刘大顺发布了新的文献求助10
2秒前
善学以致用应助123采纳,获得10
2秒前
从容谷菱发布了新的文献求助10
2秒前
dffadsd完成签到,获得积分10
3秒前
lau关注了科研通微信公众号
3秒前
我的光完成签到,获得积分10
3秒前
5秒前
田様应助体贴薯片采纳,获得10
5秒前
5秒前
5秒前
张蒲喆完成签到,获得积分20
5秒前
盐咸小狗完成签到 ,获得积分10
6秒前
思睿观通发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
吕小布发布了新的文献求助10
7秒前
PU发布了新的文献求助10
7秒前
7秒前
8秒前
平淡的画板完成签到,获得积分10
8秒前
8秒前
8秒前
仲颖发布了新的文献求助10
8秒前
赵玉珊发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Gonna发布了新的文献求助10
10秒前
Kenny发布了新的文献求助10
10秒前
XUXU发布了新的文献求助10
10秒前
优雅山柏发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
tomorrow完成签到 ,获得积分10
11秒前
11秒前
MM关注了科研通微信公众号
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727988
求助须知:如何正确求助?哪些是违规求助? 5310720
关于积分的说明 15312703
捐赠科研通 4875267
什么是DOI,文献DOI怎么找? 2618674
邀请新用户注册赠送积分活动 1568332
关于科研通互助平台的介绍 1524966