亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT

人工智能 模态(人机交互) 计算机科学 深度学习 衰减校正 卷积神经网络 单光子发射计算机断层摄影术 特征(语言学) 图像配准 Spect成像 计算机视觉 图像融合 模式识别(心理学) 发射计算机断层扫描 断层摄影术 核医学 正电子发射断层摄影术 医学 放射科 图像(数学) 语言学 哲学
作者
Xiongchao Chen,Bo Zhou,Huidong Xie,Xueqi Guo,Jiazhen Zhang,James S. Duncan,Edward J. Miller,Albert J. Sinusas,John A. Onofrey,Chi Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102840-102840 被引量:9
标识
DOI:10.1016/j.media.2023.102840
摘要

Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. Attenuation maps (μ-maps) derived from computed tomography (CT) are utilized for attenuation correction (AC) to improve the diagnostic accuracy of cardiac SPECT. However, in clinical practice, SPECT and CT scans are acquired sequentially, potentially inducing misregistration between the two images and further producing AC artifacts. Conventional intensity-based registration methods show poor performance in the cross-modality registration of SPECT and CT-derived μ-maps since the two imaging modalities might present totally different intensity patterns. Deep learning has shown great potential in medical imaging registration. However, existing deep learning strategies for medical image registration encoded the input images by simply concatenating the feature maps of different convolutional layers, which might not fully extract or fuse the input information. In addition, deep-learning-based cross-modality registration of cardiac SPECT and CT-derived μ-maps has not been investigated before. In this paper, we propose a novel Dual-Channel Squeeze-Fusion-Excitation (DuSFE) co-attention module for the cross-modality rigid registration of cardiac SPECT and CT-derived μ-maps. DuSFE is designed based on the co-attention mechanism of two cross-connected input data streams. The channel-wise or spatial features of SPECT and μ-maps are jointly encoded, fused, and recalibrated in the DuSFE module. DuSFE can be flexibly embedded at multiple convolutional layers to enable gradual feature fusion in different spatial dimensions. Our studies using clinical patient MPI studies demonstrated that the DuSFE-embedded neural network generated significantly lower registration errors and more accurate AC SPECT images than existing methods. We also showed that the DuSFE-embedded network did not over-correct or degrade the registration performance of motion-free cases. The source code of this work is available at https://github.com/XiongchaoChen/DuSFE_CrossRegistration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
2秒前
思源应助yui采纳,获得10
21秒前
yoyo完成签到,获得积分10
26秒前
yui完成签到,获得积分10
34秒前
直率香寒发布了新的文献求助10
36秒前
KKIII发布了新的文献求助10
54秒前
迷茫的一代完成签到,获得积分10
1分钟前
1分钟前
直率香寒完成签到,获得积分10
1分钟前
葱饼完成签到 ,获得积分10
1分钟前
张立人发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
完美芹发布了新的文献求助10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
火星完成签到 ,获得积分10
3分钟前
souther完成签到,获得积分0
3分钟前
生姜批发刘哥完成签到 ,获得积分10
3分钟前
3分钟前
小鹿发布了新的文献求助10
3分钟前
小鹿完成签到,获得积分10
3分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
caca完成签到,获得积分10
5分钟前
bkagyin应助完美芹采纳,获得10
5分钟前
高高的天亦完成签到 ,获得积分10
5分钟前
5分钟前
ding应助契合采纳,获得10
5分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346841
求助须知:如何正确求助?哪些是违规求助? 2973392
关于积分的说明 8659208
捐赠科研通 2653886
什么是DOI,文献DOI怎么找? 1453360
科研通“疑难数据库(出版商)”最低求助积分说明 672885
邀请新用户注册赠送积分活动 662830