DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT

人工智能 模态(人机交互) 计算机科学 深度学习 衰减校正 卷积神经网络 单光子发射计算机断层摄影术 特征(语言学) 图像配准 Spect成像 计算机视觉 图像融合 模式识别(心理学) 发射计算机断层扫描 断层摄影术 核医学 正电子发射断层摄影术 医学 放射科 图像(数学) 语言学 哲学
作者
Xiongchao Chen,Bo Zhou,Huidong Xie,Xueqi Guo,Jiazhen Zhang,James S. Duncan,Edward J. Miller,Albert J. Sinusas,John A. Onofrey,Chi Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:88: 102840-102840 被引量:9
标识
DOI:10.1016/j.media.2023.102840
摘要

Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. Attenuation maps (μ-maps) derived from computed tomography (CT) are utilized for attenuation correction (AC) to improve the diagnostic accuracy of cardiac SPECT. However, in clinical practice, SPECT and CT scans are acquired sequentially, potentially inducing misregistration between the two images and further producing AC artifacts. Conventional intensity-based registration methods show poor performance in the cross-modality registration of SPECT and CT-derived μ-maps since the two imaging modalities might present totally different intensity patterns. Deep learning has shown great potential in medical imaging registration. However, existing deep learning strategies for medical image registration encoded the input images by simply concatenating the feature maps of different convolutional layers, which might not fully extract or fuse the input information. In addition, deep-learning-based cross-modality registration of cardiac SPECT and CT-derived μ-maps has not been investigated before. In this paper, we propose a novel Dual-Channel Squeeze-Fusion-Excitation (DuSFE) co-attention module for the cross-modality rigid registration of cardiac SPECT and CT-derived μ-maps. DuSFE is designed based on the co-attention mechanism of two cross-connected input data streams. The channel-wise or spatial features of SPECT and μ-maps are jointly encoded, fused, and recalibrated in the DuSFE module. DuSFE can be flexibly embedded at multiple convolutional layers to enable gradual feature fusion in different spatial dimensions. Our studies using clinical patient MPI studies demonstrated that the DuSFE-embedded neural network generated significantly lower registration errors and more accurate AC SPECT images than existing methods. We also showed that the DuSFE-embedded network did not over-correct or degrade the registration performance of motion-free cases. The source code of this work is available at https://github.com/XiongchaoChen/DuSFE_CrossRegistration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助李耐寒采纳,获得10
刚刚
愫浅完成签到,获得积分10
刚刚
2秒前
蒋蒋发布了新的文献求助10
2秒前
2秒前
研友_西门孤晴完成签到,获得积分10
3秒前
Hello应助阙女士采纳,获得10
3秒前
Orange应助江峰采纳,获得10
3秒前
思源应助lvv采纳,获得10
4秒前
4秒前
lllllkkkj完成签到,获得积分10
4秒前
呼啦完成签到,获得积分10
5秒前
愫浅发布了新的文献求助10
5秒前
修脚大师发布了新的文献求助10
6秒前
科研通AI6应助pb采纳,获得10
6秒前
嘉的科研完成签到,获得积分10
6秒前
jagger发布了新的文献求助10
7秒前
7秒前
quququ发布了新的文献求助10
7秒前
7秒前
秀丽菠萝完成签到,获得积分10
8秒前
归尘发布了新的文献求助10
8秒前
nc完成签到 ,获得积分10
8秒前
爆米花应助henwunai7106采纳,获得10
9秒前
9秒前
闪闪天晴完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
李耐寒完成签到,获得积分10
11秒前
lsybf发布了新的文献求助10
11秒前
甫_F完成签到,获得积分10
12秒前
12秒前
充电宝应助花呗采纳,获得10
12秒前
赘婿应助wddfz采纳,获得10
12秒前
傲骨完成签到 ,获得积分10
12秒前
乐乐应助蒋蒋采纳,获得10
12秒前
阙女士完成签到,获得积分10
13秒前
13秒前
自己发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048461
求助须知:如何正确求助?哪些是违规求助? 4276881
关于积分的说明 13331666
捐赠科研通 4091435
什么是DOI,文献DOI怎么找? 2239026
邀请新用户注册赠送积分活动 1245918
关于科研通互助平台的介绍 1174426