已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of unsupervised and supervised learning to a material attribute database of tablets produced at two different granulation scales

造粒 主成分分析 偏最小二乘回归 回归分析 人工智能 极限抗拉强度 相似性(几何) 无监督学习 计算机科学 数学 模式识别(心理学) 数据库 材料科学 统计 复合材料 图像(数学)
作者
Yoshihiro Hayashi,Miho Noguchi,Takuya Oishi,Takashi Ono,Kotaro Okada,Yoshinori Onuki
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:641: 123066-123066 被引量:1
标识
DOI:10.1016/j.ijpharm.2023.123066
摘要

The purpose of this study is to demonstrate the usefulness of machine learning (ML) for analyzing a material attribute database from tablets produced at different granulation scales. High shear wet granulators (scale 30 g and 1000 g) were used and data were collected according to the design of experiments at different scales. In total, 38 different tablets were prepared, and the tensile strength (TS) and dissolution rate after 10 min (DS10) were measured. In addition, 15 material attributes (MAs) related to particle size distribution, bulk density, elasticity, plasticity, surface properties, and moisture content of granules were evaluated. By using unsupervised learning including principal component analysis and hierarchical cluster analysis, the regions of tablets produced at each scale were visualized. Subsequently, supervised learning with feature selection including partial least squares regression with variable importance in projection and elastic net were applied. The constructed models could predict the TS and DS10 from the MAs and the compression force with high accuracy (R2= 0.777 and 0.748, respectively), independent of scale. In addition, important factors were successfully identified. ML can be used for better understanding of similarity/dissimilarity between scales, for constructing predictive models of critical quality attributes, and for determining critical factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐先生发布了新的文献求助10
1秒前
香蕉觅云应助等待凡桃采纳,获得10
2秒前
奕霖发布了新的文献求助10
2秒前
科研通AI2S应助含糊的如冰采纳,获得10
3秒前
3秒前
天天发布了新的文献求助10
3秒前
4秒前
1111完成签到,获得积分20
4秒前
CipherSage应助张三毛采纳,获得10
7秒前
7秒前
8秒前
8秒前
乐乐应助陈塘关守将采纳,获得10
9秒前
树新风发布了新的文献求助10
9秒前
10秒前
科研通AI6应助正太低音炮采纳,获得10
10秒前
11秒前
orixero应助明明采纳,获得10
11秒前
安详冰夏发布了新的文献求助10
12秒前
优美紫槐发布了新的文献求助10
13秒前
李飞feifei发布了新的文献求助10
14秒前
明亮豆芽完成签到 ,获得积分10
15秒前
16秒前
Lucas应助戏志才采纳,获得10
16秒前
17秒前
Starara发布了新的文献求助10
17秒前
18秒前
lhm完成签到,获得积分10
18秒前
zheng2001完成签到,获得积分10
19秒前
FeiBai发布了新的文献求助30
20秒前
volcano发布了新的文献求助10
20秒前
zheng2001发布了新的文献求助10
21秒前
hanhan发布了新的文献求助10
21秒前
Jemma发布了新的文献求助10
21秒前
21秒前
BowieHuang应助燕麦大王采纳,获得10
23秒前
优美紫槐发布了新的文献求助10
23秒前
walthime完成签到,获得积分10
24秒前
PP完成签到,获得积分10
25秒前
Qiqi发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650068
求助须知:如何正确求助?哪些是违规求助? 4779859
关于积分的说明 15051275
捐赠科研通 4809036
什么是DOI,文献DOI怎么找? 2571942
邀请新用户注册赠送积分活动 1528211
关于科研通互助平台的介绍 1487052