Application of unsupervised and supervised learning to a material attribute database of tablets produced at two different granulation scales

造粒 主成分分析 偏最小二乘回归 回归分析 人工智能 极限抗拉强度 相似性(几何) 无监督学习 计算机科学 数学 模式识别(心理学) 数据库 材料科学 统计 复合材料 图像(数学)
作者
Yoshihiro Hayashi,Miho Noguchi,Takuya Oishi,Takashi Ono,Kotaro Okada,Yoshinori Onuki
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:641: 123066-123066 被引量:1
标识
DOI:10.1016/j.ijpharm.2023.123066
摘要

The purpose of this study is to demonstrate the usefulness of machine learning (ML) for analyzing a material attribute database from tablets produced at different granulation scales. High shear wet granulators (scale 30 g and 1000 g) were used and data were collected according to the design of experiments at different scales. In total, 38 different tablets were prepared, and the tensile strength (TS) and dissolution rate after 10 min (DS10) were measured. In addition, 15 material attributes (MAs) related to particle size distribution, bulk density, elasticity, plasticity, surface properties, and moisture content of granules were evaluated. By using unsupervised learning including principal component analysis and hierarchical cluster analysis, the regions of tablets produced at each scale were visualized. Subsequently, supervised learning with feature selection including partial least squares regression with variable importance in projection and elastic net were applied. The constructed models could predict the TS and DS10 from the MAs and the compression force with high accuracy (R2= 0.777 and 0.748, respectively), independent of scale. In addition, important factors were successfully identified. ML can be used for better understanding of similarity/dissimilarity between scales, for constructing predictive models of critical quality attributes, and for determining critical factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗成风发布了新的文献求助10
刚刚
Orange应助ivying0209采纳,获得10
1秒前
Akim应助一已采纳,获得10
3秒前
ZeKaWa应助行者无疆采纳,获得10
5秒前
小蘑菇应助奋斗成风采纳,获得10
9秒前
evans完成签到,获得积分10
10秒前
甜甜凉面完成签到,获得积分10
18秒前
科研通AI6应助arnoan采纳,获得10
18秒前
王子怡完成签到,获得积分10
18秒前
无限安蕾完成签到,获得积分10
19秒前
科研通AI2S应助hahajiang采纳,获得10
21秒前
21秒前
姜饼糖果屋完成签到,获得积分10
22秒前
大河细流完成签到,获得积分10
23秒前
ZeKaWa应助行者无疆采纳,获得10
23秒前
27秒前
vv完成签到,获得积分10
27秒前
29秒前
黄芪完成签到 ,获得积分10
29秒前
5AGAME完成签到,获得积分10
30秒前
huangbing123完成签到 ,获得积分10
31秒前
安静的飞薇完成签到,获得积分10
32秒前
cokk发布了新的文献求助10
34秒前
超级李包包完成签到,获得积分10
34秒前
DJ完成签到,获得积分10
36秒前
科研通AI6应助jc哥采纳,获得10
36秒前
张zhang发布了新的文献求助10
37秒前
37秒前
认真做科研完成签到,获得积分10
37秒前
37秒前
38秒前
钟鸿盛Domi发布了新的文献求助10
42秒前
繁荣的又亦完成签到 ,获得积分10
42秒前
44秒前
46秒前
48秒前
ZeKaWa应助行者无疆采纳,获得10
50秒前
ivying0209发布了新的文献求助10
50秒前
54秒前
调皮雨灵完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915