Application of unsupervised and supervised learning to a material attribute database of tablets produced at two different granulation scales

造粒 主成分分析 偏最小二乘回归 回归分析 人工智能 极限抗拉强度 相似性(几何) 无监督学习 计算机科学 数学 模式识别(心理学) 数据库 材料科学 统计 复合材料 图像(数学)
作者
Yoshihiro Hayashi,Miho Noguchi,Takuya Oishi,Takashi Ono,Kotaro Okada,Yoshinori Onuki
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:641: 123066-123066 被引量:1
标识
DOI:10.1016/j.ijpharm.2023.123066
摘要

The purpose of this study is to demonstrate the usefulness of machine learning (ML) for analyzing a material attribute database from tablets produced at different granulation scales. High shear wet granulators (scale 30 g and 1000 g) were used and data were collected according to the design of experiments at different scales. In total, 38 different tablets were prepared, and the tensile strength (TS) and dissolution rate after 10 min (DS10) were measured. In addition, 15 material attributes (MAs) related to particle size distribution, bulk density, elasticity, plasticity, surface properties, and moisture content of granules were evaluated. By using unsupervised learning including principal component analysis and hierarchical cluster analysis, the regions of tablets produced at each scale were visualized. Subsequently, supervised learning with feature selection including partial least squares regression with variable importance in projection and elastic net were applied. The constructed models could predict the TS and DS10 from the MAs and the compression force with high accuracy (R2= 0.777 and 0.748, respectively), independent of scale. In addition, important factors were successfully identified. ML can be used for better understanding of similarity/dissimilarity between scales, for constructing predictive models of critical quality attributes, and for determining critical factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
彩色岂愈发布了新的文献求助10
1秒前
1秒前
多情晓曼完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
Zhao发布了新的文献求助10
2秒前
机智雅阳发布了新的文献求助10
2秒前
3秒前
tianjiu发布了新的文献求助10
3秒前
谢惠茹发布了新的文献求助10
3秒前
4秒前
理理完成签到 ,获得积分10
4秒前
落后的哈密瓜完成签到,获得积分10
4秒前
解惑大师发布了新的文献求助10
4秒前
PaoPao完成签到,获得积分10
4秒前
5秒前
涛zt应助叶坊采纳,获得10
5秒前
6秒前
ppsweek发布了新的文献求助10
6秒前
MM11111发布了新的文献求助10
6秒前
xixi发布了新的文献求助10
7秒前
拼搏草莓发布了新的文献求助10
7秒前
8秒前
今后应助matty采纳,获得10
8秒前
闪闪烨华发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
9秒前
ilihe应助xh采纳,获得10
9秒前
zlllllll发布了新的文献求助10
10秒前
阳阳发布了新的文献求助10
10秒前
10秒前
佛蒙特完成签到,获得积分10
10秒前
张婷完成签到,获得积分10
11秒前
11秒前
dadawang发布了新的文献求助10
11秒前
清爽博超完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774251
求助须知:如何正确求助?哪些是违规求助? 5616574
关于积分的说明 15435095
捐赠科研通 4906776
什么是DOI,文献DOI怎么找? 2640385
邀请新用户注册赠送积分活动 1588179
关于科研通互助平台的介绍 1543225