癫痫发生
癫痫
荧光
内生
癫痫持续状态
超氧化物
活性氧
氧化应激
化学
体内
神经科学
生物物理学
生物化学
生物
物理
酶
生物技术
量子力学
作者
Weiwu Ying,Fuxing Dong,Yifan Shi,Ziyi Zhan,Shuwan Wang,Li Lv,Huizhen Liu,Ling Liu,Youguang Zheng,Ling Zhang
标识
DOI:10.1016/j.dyepig.2023.111155
摘要
Epilepsy is a chronic neurological disorder, and the pathophysiological progression to status epilepticus is closely associated with oxidative stress. Superoxide anions (O2•-), as the main, most important precursor of other reactive oxygen species (ROS), play a crucial role in seizure-induced brain damage. However, detecting the actual O2•- levels and understanding the physiological roles of O2• in epileptic brains remain challenging due to the lack of effective in vivo detection tools. Herein, a new near-infrared fluorescent probe, MB-SO, was prepared for the determination of endogenous O2•- in brains experiencing pentylenetetrazole (PTZ)-induced epileptic seizures. MB-SO exhibits high sensitivity (detection limit of 14 nM), good selectivity and a fast response towards O2•-. MB-SO was applied in situ to monitor endogenous O2•- in living HT-22 cells and living mice. Using this probe, we visualized and quantitatively detected endogenous O2•- for the first time in the hippocampi of PTZ-induced epileptic mouse brains. MB-SO also displayed a positive correlation between high O2•- levels in epileptic brains and epileptogenesis. These results indicated that the probe MB-SO is an efficient tool for monitoring endogenous O2•- in vivo and exploring the pathogenesis of epilepsy.
科研通智能强力驱动
Strongly Powered by AbleSci AI