A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective

静电纺丝 纳米纤维 生物相容性 伤口愈合 纳米技术 伤口护理 材料科学 再生(生物学) 伤口敷料 生物医学工程 医学 外科 复合材料 聚合物 细胞生物学 冶金 生物
作者
Mohit Kumar,Ayah Rebhi Hilles,Yi Ge,Amit Bhatia,Syed Mahmood
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:234: 123696-123696 被引量:93
标识
DOI:10.1016/j.ijbiomac.2023.123696
摘要

The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jingjing完成签到 ,获得积分10
1秒前
2秒前
君尧发布了新的文献求助10
2秒前
FashionBoy应助王宽宽宽采纳,获得10
2秒前
2秒前
科研通AI6应助王志新采纳,获得10
2秒前
3秒前
魏家乐完成签到,获得积分10
3秒前
wyuwqhjp发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
酷酷怀曼完成签到,获得积分10
4秒前
华仔应助QWE采纳,获得10
4秒前
li发布了新的文献求助10
4秒前
hezhuyou发布了新的文献求助10
4秒前
江山完成签到,获得积分10
4秒前
4秒前
5秒前
斯文败类应助安安采纳,获得10
6秒前
6秒前
7秒前
7秒前
娃娃菜妮发布了新的文献求助10
7秒前
orange发布了新的文献求助10
7秒前
8秒前
去玩儿发布了新的文献求助10
8秒前
哈哈哈哈完成签到,获得积分10
8秒前
滕可燕完成签到,获得积分10
8秒前
9秒前
小蘑菇应助刚国忠采纳,获得10
9秒前
mylove应助Sid采纳,获得10
10秒前
承乐发布了新的文献求助30
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
王宽宽宽完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836