合理设计
计算机科学
吞吐量
实现(概率)
领域(数学分析)
财产(哲学)
材料设计
生化工程
纳米技术
系统工程
材料科学
工程类
无线
电信
数学分析
哲学
统计
数学
认识论
万维网
作者
R. Patel,Michael A. Webb
出处
期刊:ACS applied bio materials
[American Chemical Society]
日期:2023-01-26
卷期号:7 (2): 510-527
被引量:21
标识
DOI:10.1021/acsabm.2c00962
摘要
Polymers, with the capacity to tunably alter properties and response based on manipulation of their chemical characteristics, are attractive components in biomaterials. Nevertheless, their potential as functional materials is also inhibited by their complexity, which complicates rational or brute-force design and realization. In recent years, machine learning has emerged as a useful tool for facilitating materials design via efficient modeling of structure–property relationships in the chemical domain of interest. In this Spotlight, we discuss the emergence of data-driven design of polymers that can be deployed in biomaterials with particular emphasis on complex copolymer systems. We outline recent developments, as well as our own contributions and takeaways, related to high-throughput data generation for polymer systems, methods for surrogate modeling by machine learning, and paradigms for property optimization and design. Throughout this discussion, we highlight key aspects of successful strategies and other considerations that will be relevant to the future design of polymer-based biomaterials with target properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI