Improving Performance, Reliability, and Feasibility in Multimodal Multitask Traffic Classification with XAI

计算机科学 可解释性 利用 人工智能 机器学习 可靠性(半导体) 分类器(UML) 交通分类 领域(数学) 网络数据包 数据挖掘 计算机安全 物理 纯数学 功率(物理) 量子力学 数学
作者
Alfredo Nascita,Antonio Montieri,Giuseppe Aceto,Domenico Ciuonzo,Valerio Persico,Antonio Pescapé
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1267-1289 被引量:8
标识
DOI:10.1109/tnsm.2023.3246794
摘要

The promise of Deep Learning (DL) in solving hard problems such as network Traffic Classification (TC) is being held back by the severe lack of transparency and explainability of this kind of approaches. To cope with this strongly felt issue, the field of eXplainable Artificial Intelligence (XAI) has been recently founded, and is providing effective techniques and approaches. Accordingly, in this work we investigate interpretability via XAIbased techniques to understand and improve the behavior of state-of-the-art multimodal and multitask DL traffic classifiers. Using a publicly available security-related dataset (ISCX VPNNONVPN), we explore and exploit XAI techniques to characterize the considered classifiers providing global interpretations (rather than sample-based ones), and define a novel classifier, DISTILLER-EVOLVED, optimized along three objectives: performance, reliability, feasibility. The proposed methodology proves as highly appealing, allowing to much simplify the architecture to get faster training time and shorter classification time, as fewer packets must be collected. This is at the expenses of negligible (or even positive) impact on classification performance, while understanding and controlling the interplay between inputs, model complexity, performance, and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助hauru采纳,获得10
刚刚
1秒前
Lsx完成签到,获得积分10
2秒前
2秒前
3秒前
绿色心情完成签到,获得积分10
4秒前
CodeCraft应助lee采纳,获得10
4秒前
5秒前
6秒前
NexusExplorer应助秋来九月八采纳,获得10
6秒前
M1982发布了新的文献求助10
6秒前
CC完成签到,获得积分10
7秒前
snowpie完成签到 ,获得积分10
7秒前
完美世界应助整齐行云采纳,获得10
7秒前
绿色心情发布了新的文献求助10
8秒前
8秒前
8秒前
充电宝应助OKOK采纳,获得10
8秒前
CipherSage应助大卫戴采纳,获得10
8秒前
充电宝应助124578采纳,获得10
9秒前
归海老四完成签到,获得积分10
9秒前
小二郎应助走路的超人采纳,获得10
9秒前
苔原猫咪甜甜圈完成签到,获得积分10
9秒前
CC发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
杨YY完成签到,获得积分10
11秒前
11秒前
大个应助知更鸟采纳,获得10
11秒前
天天快乐应助M1982采纳,获得10
12秒前
余顺和发布了新的文献求助10
13秒前
cchen发布了新的文献求助10
13秒前
852应助周周采纳,获得10
15秒前
冷傲冬易发布了新的文献求助10
15秒前
慕青应助2jz采纳,获得10
16秒前
16秒前
16秒前
77发布了新的文献求助10
17秒前
露露发布了新的文献求助10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980224
求助须知:如何正确求助?哪些是违规求助? 3524191
关于积分的说明 11220260
捐赠科研通 3261653
什么是DOI,文献DOI怎么找? 1800792
邀请新用户注册赠送积分活动 879296
科研通“疑难数据库(出版商)”最低求助积分说明 807232