Improving Performance, Reliability, and Feasibility in Multimodal Multitask Traffic Classification with XAI

计算机科学 可解释性 利用 人工智能 机器学习 可靠性(半导体) 分类器(UML) 交通分类 领域(数学) 网络数据包 数据挖掘 计算机安全 物理 纯数学 功率(物理) 量子力学 数学
作者
Alfredo Nascita,Antonio Montieri,Giuseppe Aceto,Domenico Ciuonzo,Valerio Persico,Antonio Pescapé
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1267-1289 被引量:8
标识
DOI:10.1109/tnsm.2023.3246794
摘要

The promise of Deep Learning (DL) in solving hard problems such as network Traffic Classification (TC) is being held back by the severe lack of transparency and explainability of this kind of approaches. To cope with this strongly felt issue, the field of eXplainable Artificial Intelligence (XAI) has been recently founded, and is providing effective techniques and approaches. Accordingly, in this work we investigate interpretability via XAIbased techniques to understand and improve the behavior of state-of-the-art multimodal and multitask DL traffic classifiers. Using a publicly available security-related dataset (ISCX VPNNONVPN), we explore and exploit XAI techniques to characterize the considered classifiers providing global interpretations (rather than sample-based ones), and define a novel classifier, DISTILLER-EVOLVED, optimized along three objectives: performance, reliability, feasibility. The proposed methodology proves as highly appealing, allowing to much simplify the architecture to get faster training time and shorter classification time, as fewer packets must be collected. This is at the expenses of negligible (or even positive) impact on classification performance, while understanding and controlling the interplay between inputs, model complexity, performance, and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nihao完成签到,获得积分10
刚刚
刚刚
传奇3应助夕荀采纳,获得10
刚刚
Orange应助XX采纳,获得10
刚刚
maclogos发布了新的文献求助10
1秒前
1秒前
小马甲应助wly采纳,获得10
2秒前
搞怪书兰完成签到,获得积分10
2秒前
2秒前
华仔应助刀不如我冷采纳,获得10
2秒前
眨眨眼完成签到,获得积分10
3秒前
nns完成签到,获得积分10
3秒前
3秒前
feiyuzhang完成签到,获得积分10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
可耐的慕梅完成签到,获得积分10
4秒前
墨兮完成签到,获得积分10
4秒前
星辰大海应助keyanxiaobaishu采纳,获得10
4秒前
激情的随阴完成签到,获得积分10
5秒前
5秒前
wanci应助王一鸣采纳,获得10
5秒前
CY发布了新的文献求助10
5秒前
领导范儿应助Alberat采纳,获得10
6秒前
不爱喝咖啡完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
dd完成签到,获得积分10
7秒前
sherry完成签到 ,获得积分10
8秒前
飘逸的寄柔完成签到 ,获得积分10
8秒前
芝士肉肉丸完成签到,获得积分10
8秒前
赫三问发布了新的文献求助10
8秒前
小包发布了新的文献求助10
8秒前
9秒前
xibei完成签到,获得积分10
9秒前
传奇3应助123采纳,获得10
9秒前
bkagyin应助无私的犀牛采纳,获得10
10秒前
柔弱云朵发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005