Improving Performance, Reliability, and Feasibility in Multimodal Multitask Traffic Classification with XAI

计算机科学 可解释性 利用 人工智能 机器学习 可靠性(半导体) 分类器(UML) 交通分类 领域(数学) 网络数据包 数据挖掘 计算机安全 物理 纯数学 功率(物理) 量子力学 数学
作者
Alfredo Nascita,Antonio Montieri,Giuseppe Aceto,Domenico Ciuonzo,Valerio Persico,Antonio Pescapé
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1267-1289 被引量:8
标识
DOI:10.1109/tnsm.2023.3246794
摘要

The promise of Deep Learning (DL) in solving hard problems such as network Traffic Classification (TC) is being held back by the severe lack of transparency and explainability of this kind of approaches. To cope with this strongly felt issue, the field of eXplainable Artificial Intelligence (XAI) has been recently founded, and is providing effective techniques and approaches. Accordingly, in this work we investigate interpretability via XAIbased techniques to understand and improve the behavior of state-of-the-art multimodal and multitask DL traffic classifiers. Using a publicly available security-related dataset (ISCX VPNNONVPN), we explore and exploit XAI techniques to characterize the considered classifiers providing global interpretations (rather than sample-based ones), and define a novel classifier, DISTILLER-EVOLVED, optimized along three objectives: performance, reliability, feasibility. The proposed methodology proves as highly appealing, allowing to much simplify the architecture to get faster training time and shorter classification time, as fewer packets must be collected. This is at the expenses of negligible (or even positive) impact on classification performance, while understanding and controlling the interplay between inputs, model complexity, performance, and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
tiany完成签到,获得积分10
10秒前
10秒前
青柠完成签到 ,获得积分10
16秒前
看文献完成签到,获得积分10
16秒前
21秒前
震动的鹏飞完成签到 ,获得积分10
21秒前
23秒前
洁净的幼珊完成签到,获得积分10
24秒前
简单应助科研通管家采纳,获得10
40秒前
萧萧应助科研通管家采纳,获得10
40秒前
shouz应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
简单应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
zhixue2025完成签到 ,获得积分10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
简单应助科研通管家采纳,获得10
40秒前
ycd完成签到,获得积分10
40秒前
41秒前
YufeiLiu发布了新的文献求助10
49秒前
Damon完成签到 ,获得积分10
49秒前
缺口口完成签到 ,获得积分10
51秒前
dddd完成签到 ,获得积分10
53秒前
loga80完成签到,获得积分0
54秒前
54秒前
zhouyms完成签到,获得积分10
55秒前
赘婿应助无所谓的啦采纳,获得10
56秒前
情怀应助无所谓的啦采纳,获得10
56秒前
ding应助无所谓的啦采纳,获得10
56秒前
李健应助无所谓的啦采纳,获得10
56秒前
56秒前
56秒前
AM发布了新的文献求助10
59秒前
59秒前
幸福妙柏完成签到 ,获得积分10
1分钟前
乔杰完成签到 ,获得积分10
1分钟前
BAI_1完成签到,获得积分10
1分钟前
32429606完成签到 ,获得积分10
1分钟前
顾矜应助fengw420采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481712
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559