Improving Performance, Reliability, and Feasibility in Multimodal Multitask Traffic Classification with XAI

计算机科学 可解释性 利用 人工智能 机器学习 可靠性(半导体) 分类器(UML) 交通分类 领域(数学) 网络数据包 数据挖掘 计算机安全 物理 纯数学 功率(物理) 量子力学 数学
作者
Alfredo Nascita,Antonio Montieri,Giuseppe Aceto,Domenico Ciuonzo,Valerio Persico,Antonio Pescapé
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1267-1289 被引量:8
标识
DOI:10.1109/tnsm.2023.3246794
摘要

The promise of Deep Learning (DL) in solving hard problems such as network Traffic Classification (TC) is being held back by the severe lack of transparency and explainability of this kind of approaches. To cope with this strongly felt issue, the field of eXplainable Artificial Intelligence (XAI) has been recently founded, and is providing effective techniques and approaches. Accordingly, in this work we investigate interpretability via XAIbased techniques to understand and improve the behavior of state-of-the-art multimodal and multitask DL traffic classifiers. Using a publicly available security-related dataset (ISCX VPNNONVPN), we explore and exploit XAI techniques to characterize the considered classifiers providing global interpretations (rather than sample-based ones), and define a novel classifier, DISTILLER-EVOLVED, optimized along three objectives: performance, reliability, feasibility. The proposed methodology proves as highly appealing, allowing to much simplify the architecture to get faster training time and shorter classification time, as fewer packets must be collected. This is at the expenses of negligible (or even positive) impact on classification performance, while understanding and controlling the interplay between inputs, model complexity, performance, and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
猪猪hero发布了新的文献求助10
1秒前
1秒前
2秒前
ccmocker发布了新的文献求助10
3秒前
zho发布了新的文献求助10
3秒前
彭洪泽发布了新的文献求助10
4秒前
5秒前
5秒前
8秒前
9秒前
科研白白完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
11秒前
乐乐应助如意的代容采纳,获得10
11秒前
开朗雪巧完成签到,获得积分10
12秒前
big烂泥完成签到,获得积分10
13秒前
敏敏完成签到 ,获得积分10
14秒前
Chocolate发布了新的文献求助10
14秒前
14秒前
wanci应助友好的鲜花采纳,获得10
14秒前
15秒前
15秒前
gujianhua发布了新的文献求助10
16秒前
17秒前
高挑的果汁完成签到 ,获得积分10
18秒前
18秒前
谢谢李完成签到 ,获得积分10
18秒前
苏苏发布了新的文献求助30
19秒前
wade2016发布了新的文献求助10
19秒前
19秒前
20秒前
撑撑的烤红薯完成签到 ,获得积分10
21秒前
深情安青应助练习者采纳,获得10
21秒前
可爱的函函应助automan采纳,获得10
21秒前
烟花应助Windycityguy采纳,获得10
21秒前
hua发布了新的文献求助10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
aliao完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664331
求助须知:如何正确求助?哪些是违规求助? 3224444
关于积分的说明 9757422
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012