Improving Performance, Reliability, and Feasibility in Multimodal Multitask Traffic Classification with XAI

计算机科学 可解释性 利用 人工智能 机器学习 可靠性(半导体) 分类器(UML) 交通分类 领域(数学) 网络数据包 数据挖掘 计算机安全 物理 纯数学 功率(物理) 量子力学 数学
作者
Alfredo Nascita,Antonio Montieri,Giuseppe Aceto,Domenico Ciuonzo,Valerio Persico,Antonio Pescapé
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1267-1289 被引量:8
标识
DOI:10.1109/tnsm.2023.3246794
摘要

The promise of Deep Learning (DL) in solving hard problems such as network Traffic Classification (TC) is being held back by the severe lack of transparency and explainability of this kind of approaches. To cope with this strongly felt issue, the field of eXplainable Artificial Intelligence (XAI) has been recently founded, and is providing effective techniques and approaches. Accordingly, in this work we investigate interpretability via XAIbased techniques to understand and improve the behavior of state-of-the-art multimodal and multitask DL traffic classifiers. Using a publicly available security-related dataset (ISCX VPNNONVPN), we explore and exploit XAI techniques to characterize the considered classifiers providing global interpretations (rather than sample-based ones), and define a novel classifier, DISTILLER-EVOLVED, optimized along three objectives: performance, reliability, feasibility. The proposed methodology proves as highly appealing, allowing to much simplify the architecture to get faster training time and shorter classification time, as fewer packets must be collected. This is at the expenses of negligible (or even positive) impact on classification performance, while understanding and controlling the interplay between inputs, model complexity, performance, and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助无辜的寄风采纳,获得10
1秒前
1秒前
Wang发布了新的文献求助10
2秒前
2秒前
James完成签到,获得积分10
2秒前
TakIc发布了新的文献求助10
2秒前
3秒前
240325发布了新的文献求助10
4秒前
李健应助刘星宇采纳,获得10
4秒前
4秒前
情怀应助研友_nV2Npn采纳,获得10
5秒前
6秒前
科研通AI6应助Lia采纳,获得30
6秒前
cc发布了新的文献求助10
7秒前
科研通AI6应助Diamond采纳,获得10
7秒前
8秒前
三土有兀发布了新的文献求助10
8秒前
cococola完成签到,获得积分10
9秒前
年轻的丹亦完成签到,获得积分20
9秒前
9秒前
zzy发布了新的文献求助10
9秒前
刘海婷完成签到,获得积分10
9秒前
HH发布了新的文献求助20
9秒前
11秒前
萍123完成签到 ,获得积分10
12秒前
12秒前
黑桃3完成签到 ,获得积分10
12秒前
加油女王发布了新的文献求助10
13秒前
逃跑快人一步完成签到 ,获得积分10
13秒前
Jasper应助刘海婷采纳,获得10
14秒前
Jaya666完成签到,获得积分10
14秒前
bkagyin应助倔强毛驴侠采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
无私糖豆发布了新的文献求助10
17秒前
18秒前
迅速的岩完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589645
求助须知:如何正确求助?哪些是违规求助? 4674252
关于积分的说明 14792825
捐赠科研通 4628743
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501019
关于科研通互助平台的介绍 1468472