Improving Performance, Reliability, and Feasibility in Multimodal Multitask Traffic Classification with XAI

计算机科学 可解释性 利用 人工智能 机器学习 可靠性(半导体) 分类器(UML) 交通分类 领域(数学) 网络数据包 数据挖掘 计算机安全 功率(物理) 物理 数学 量子力学 纯数学
作者
Alfredo Nascita,Antonio Montieri,Giuseppe Aceto,Domenico Ciuonzo,Valerio Persico,Antonio Pescapé
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1267-1289 被引量:8
标识
DOI:10.1109/tnsm.2023.3246794
摘要

The promise of Deep Learning (DL) in solving hard problems such as network Traffic Classification (TC) is being held back by the severe lack of transparency and explainability of this kind of approaches. To cope with this strongly felt issue, the field of eXplainable Artificial Intelligence (XAI) has been recently founded, and is providing effective techniques and approaches. Accordingly, in this work we investigate interpretability via XAIbased techniques to understand and improve the behavior of state-of-the-art multimodal and multitask DL traffic classifiers. Using a publicly available security-related dataset (ISCX VPNNONVPN), we explore and exploit XAI techniques to characterize the considered classifiers providing global interpretations (rather than sample-based ones), and define a novel classifier, DISTILLER-EVOLVED, optimized along three objectives: performance, reliability, feasibility. The proposed methodology proves as highly appealing, allowing to much simplify the architecture to get faster training time and shorter classification time, as fewer packets must be collected. This is at the expenses of negligible (or even positive) impact on classification performance, while understanding and controlling the interplay between inputs, model complexity, performance, and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王木木完成签到,获得积分10
刚刚
共产主义战士完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
领导范儿应助starrysky采纳,获得10
2秒前
CipherSage应助Yy采纳,获得10
2秒前
shen5920完成签到,获得积分10
2秒前
3秒前
Jaya666发布了新的文献求助10
3秒前
xiyue发布了新的文献求助10
4秒前
是啥完成签到,获得积分20
4秒前
tt完成签到,获得积分10
5秒前
sungyoo完成签到,获得积分10
5秒前
orixero应助huizi采纳,获得10
5秒前
6秒前
6秒前
6秒前
爆米花应助Lucky采纳,获得10
6秒前
Patrick完成签到,获得积分10
7秒前
7秒前
是微微发布了新的文献求助10
7秒前
橘子皮完成签到,获得积分10
9秒前
宁安发布了新的文献求助10
11秒前
少时黑羽发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助干净的烧鹅采纳,获得10
12秒前
12秒前
傅以柳发布了新的文献求助10
12秒前
大模型应助last炫神丶采纳,获得10
13秒前
Triones完成签到,获得积分10
13秒前
13秒前
fan完成签到,获得积分10
14秒前
拙青完成签到,获得积分10
14秒前
14秒前
14秒前
小可爱发布了新的文献求助20
15秒前
Erich完成签到 ,获得积分10
16秒前
可靠的书桃应助小小杨采纳,获得10
17秒前
烂漫念文应助鱼鱼采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847