Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output

模型输出统计 光伏系统 天气预报 数值天气预报 气象学 计算机科学 工程类 地理 电气工程
作者
Lingwei Zheng,Ran Su,Xinyu Sun,Siqi Guo
出处
期刊:Energy [Elsevier BV]
卷期号:271: 127009-127009 被引量:23
标识
DOI:10.1016/j.energy.2023.127009
摘要

With photovoltaic (PV) penetration increasing, PV-output prediction has become a research hotspot. Due to the close correlation between PV-output fluctuation and weather conditions, PV-output prediction models often vary different weather types, while the historical/forecast weather types for modeling are mostly obtained from weather-service providers. However, weather-service providers generally have deficiencies in forecast accuracy, spatio-temporal resolution, and investment/operating costs. Based on the above, this paper changes the current acquisition way of the weather types, and proposes a framework of reversely determining weather types from historical PV-output data. First, the symbol-sequence histograms (SSH) are used to describe the PV-output volatility in a coarse-grained manner. Then, the SSHs are partitionally clustered and a classification rule for weather-types is proposed to label the historical weather types. Next, considering the chaotic characteristics of PV output, a prediction method combining phase-space reconstruction with an extremely learning machine based single-layer forward net is developed to predict the SSH. Finally, the day-ahead weather type is forecasted. Simulations were implemented on the weather-type classification and forecasting using a campus PV-system in East China. The PV-output prediction results show that, compared with weather information from a weather-service supplier, 75-day mean errors are significantly reduced by 15.55% (MAPE) and 12.69% (rRMSE), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助bound采纳,获得10
刚刚
斯文败类应助科研dog采纳,获得10
1秒前
1秒前
热心市民小红花应助Zora采纳,获得10
1秒前
hucanming发布了新的文献求助10
2秒前
米多奇完成签到 ,获得积分10
3秒前
传奇3应助weilao采纳,获得10
3秒前
ljs完成签到,获得积分10
3秒前
kaka完成签到,获得积分20
3秒前
hzh完成签到,获得积分10
3秒前
汉堡包应助A_goal采纳,获得10
3秒前
lalala发布了新的文献求助10
4秒前
4秒前
mhy完成签到 ,获得积分20
4秒前
zhzzhz完成签到,获得积分10
5秒前
5秒前
5秒前
wanci应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
wonderfulwisdom完成签到,获得积分10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
小二郎应助ANGEK采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
kingwill应助科研通管家采纳,获得20
6秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
王九八发布了新的文献求助10
6秒前
小王同学完成签到,获得积分10
7秒前
7秒前
澈哩发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371