Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output

模型输出统计 光伏系统 天气预报 数值天气预报 气象学 计算机科学 工程类 地理 电气工程
作者
Lingwei Zheng,Ran Su,Xinyu Sun,Siqi Guo
出处
期刊:Energy [Elsevier]
卷期号:271: 127009-127009 被引量:28
标识
DOI:10.1016/j.energy.2023.127009
摘要

With photovoltaic (PV) penetration increasing, PV-output prediction has become a research hotspot. Due to the close correlation between PV-output fluctuation and weather conditions, PV-output prediction models often vary different weather types, while the historical/forecast weather types for modeling are mostly obtained from weather-service providers. However, weather-service providers generally have deficiencies in forecast accuracy, spatio-temporal resolution, and investment/operating costs. Based on the above, this paper changes the current acquisition way of the weather types, and proposes a framework of reversely determining weather types from historical PV-output data. First, the symbol-sequence histograms (SSH) are used to describe the PV-output volatility in a coarse-grained manner. Then, the SSHs are partitionally clustered and a classification rule for weather-types is proposed to label the historical weather types. Next, considering the chaotic characteristics of PV output, a prediction method combining phase-space reconstruction with an extremely learning machine based single-layer forward net is developed to predict the SSH. Finally, the day-ahead weather type is forecasted. Simulations were implemented on the weather-type classification and forecasting using a campus PV-system in East China. The PV-output prediction results show that, compared with weather information from a weather-service supplier, 75-day mean errors are significantly reduced by 15.55% (MAPE) and 12.69% (rRMSE), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ksiswl发布了新的文献求助10
1秒前
nn完成签到 ,获得积分10
1秒前
佐伊完成签到 ,获得积分10
1秒前
暴躁的夏烟应助权_888采纳,获得10
1秒前
JamesPei应助qsh采纳,获得10
2秒前
pps完成签到,获得积分20
2秒前
扶苏完成签到 ,获得积分10
2秒前
3秒前
qingfengnai完成签到,获得积分10
3秒前
124发布了新的文献求助10
3秒前
科研通AI6应助苹果绿采纳,获得10
3秒前
4秒前
吴天姿完成签到,获得积分10
4秒前
研友_8WMxKn发布了新的文献求助10
4秒前
李健的小迷弟应助Joyan采纳,获得10
5秒前
6秒前
6秒前
yue完成签到,获得积分10
6秒前
6秒前
帅气的藏鸟完成签到,获得积分10
6秒前
orixero应助杨潇丶丶采纳,获得10
7秒前
7秒前
7秒前
支筮发布了新的文献求助10
7秒前
linciko发布了新的文献求助10
7秒前
xj发布了新的文献求助10
7秒前
Owen应助绵绵采纳,获得10
8秒前
华仔应助澈哩子采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
ygd发布了新的文献求助10
10秒前
仁爱曼冬发布了新的文献求助10
10秒前
SciGPT应助流萤采纳,获得10
11秒前
Yidie完成签到,获得积分10
11秒前
科研通AI6应助LuxuryQ采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526