Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output

模型输出统计 光伏系统 天气预报 数值天气预报 气象学 计算机科学 工程类 地理 电气工程
作者
Lingwei Zheng,Ran Su,Xinyu Sun,Siqi Guo
出处
期刊:Energy [Elsevier]
卷期号:271: 127009-127009 被引量:16
标识
DOI:10.1016/j.energy.2023.127009
摘要

With photovoltaic (PV) penetration increasing, PV-output prediction has become a research hotspot. Due to the close correlation between PV-output fluctuation and weather conditions, PV-output prediction models often vary different weather types, while the historical/forecast weather types for modeling are mostly obtained from weather-service providers. However, weather-service providers generally have deficiencies in forecast accuracy, spatio-temporal resolution, and investment/operating costs. Based on the above, this paper changes the current acquisition way of the weather types, and proposes a framework of reversely determining weather types from historical PV-output data. First, the symbol-sequence histograms (SSH) are used to describe the PV-output volatility in a coarse-grained manner. Then, the SSHs are partitionally clustered and a classification rule for weather-types is proposed to label the historical weather types. Next, considering the chaotic characteristics of PV output, a prediction method combining phase-space reconstruction with an extremely learning machine based single-layer forward net is developed to predict the SSH. Finally, the day-ahead weather type is forecasted. Simulations were implemented on the weather-type classification and forecasting using a campus PV-system in East China. The PV-output prediction results show that, compared with weather information from a weather-service supplier, 75-day mean errors are significantly reduced by 15.55% (MAPE) and 12.69% (rRMSE), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx发布了新的文献求助10
刚刚
1秒前
1秒前
123发布了新的文献求助10
1秒前
zhong完成签到,获得积分10
1秒前
舒适砖头发布了新的文献求助10
1秒前
好吧不是完成签到,获得积分10
2秒前
2秒前
加甜发布了新的文献求助30
3秒前
Lucas应助杨杨采纳,获得30
3秒前
鱼仔发布了新的文献求助10
4秒前
4秒前
4秒前
羽宇完成签到,获得积分10
4秒前
5秒前
高大诗槐发布了新的文献求助10
5秒前
我爱科研发布了新的文献求助10
5秒前
科目三应助SY采纳,获得10
5秒前
Luisa完成签到,获得积分10
6秒前
四夕水窖完成签到,获得积分10
7秒前
wjx发布了新的文献求助10
7秒前
Jasper应助大鱼采纳,获得10
8秒前
xiaoxiao完成签到 ,获得积分10
8秒前
尼杜拉斯发布了新的文献求助30
8秒前
9秒前
614606480@qq.com完成签到,获得积分10
9秒前
科研通AI2S应助不爱吃泡面采纳,获得10
10秒前
许阿九完成签到,获得积分10
11秒前
11秒前
鱼仔完成签到,获得积分10
11秒前
leeOOO完成签到,获得积分10
11秒前
12秒前
糖皮儿完成签到,获得积分10
12秒前
Mister_CHEN发布了新的文献求助10
13秒前
13秒前
静静发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
上官若男应助sff采纳,获得30
16秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217369
求助须知:如何正确求助?哪些是违规求助? 2866690
关于积分的说明 8152715
捐赠科研通 2533461
什么是DOI,文献DOI怎么找? 1366197
科研通“疑难数据库(出版商)”最低求助积分说明 644716
邀请新用户注册赠送积分活动 617713