Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output

模型输出统计 光伏系统 天气预报 数值天气预报 气象学 计算机科学 工程类 地理 电气工程
作者
Lingwei Zheng,Ran Su,Xinyu Sun,Siqi Guo
出处
期刊:Energy [Elsevier BV]
卷期号:271: 127009-127009 被引量:28
标识
DOI:10.1016/j.energy.2023.127009
摘要

With photovoltaic (PV) penetration increasing, PV-output prediction has become a research hotspot. Due to the close correlation between PV-output fluctuation and weather conditions, PV-output prediction models often vary different weather types, while the historical/forecast weather types for modeling are mostly obtained from weather-service providers. However, weather-service providers generally have deficiencies in forecast accuracy, spatio-temporal resolution, and investment/operating costs. Based on the above, this paper changes the current acquisition way of the weather types, and proposes a framework of reversely determining weather types from historical PV-output data. First, the symbol-sequence histograms (SSH) are used to describe the PV-output volatility in a coarse-grained manner. Then, the SSHs are partitionally clustered and a classification rule for weather-types is proposed to label the historical weather types. Next, considering the chaotic characteristics of PV output, a prediction method combining phase-space reconstruction with an extremely learning machine based single-layer forward net is developed to predict the SSH. Finally, the day-ahead weather type is forecasted. Simulations were implemented on the weather-type classification and forecasting using a campus PV-system in East China. The PV-output prediction results show that, compared with weather information from a weather-service supplier, 75-day mean errors are significantly reduced by 15.55% (MAPE) and 12.69% (rRMSE), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研狗完成签到 ,获得积分20
刚刚
1秒前
1秒前
科研通AI6应助Zxc采纳,获得10
1秒前
2秒前
田様应助孔凡悦采纳,获得10
2秒前
3秒前
3秒前
3秒前
cometx完成签到 ,获得积分10
4秒前
135发布了新的文献求助10
4秒前
4秒前
椰椰鲨发布了新的文献求助30
5秒前
张凤发布了新的文献求助10
6秒前
6秒前
ZYZ完成签到,获得积分10
6秒前
yxf完成签到,获得积分10
6秒前
7秒前
谦让R发布了新的文献求助10
7秒前
万能图书馆应助z69823采纳,获得30
9秒前
Time发布了新的文献求助10
9秒前
善学以致用应助李春丽采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
浮游应助傲娇的觅翠采纳,获得10
12秒前
ymr发布了新的文献求助10
13秒前
孔凡悦发布了新的文献求助10
15秒前
15秒前
谦让R完成签到,获得积分10
16秒前
大模型应助Lven采纳,获得10
16秒前
17秒前
思源应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979618
求助须知:如何正确求助?哪些是违规求助? 4232294
关于积分的说明 13182934
捐赠科研通 4023273
什么是DOI,文献DOI怎么找? 2201279
邀请新用户注册赠送积分活动 1213717
关于科研通互助平台的介绍 1129916