Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output

模型输出统计 光伏系统 天气预报 数值天气预报 气象学 计算机科学 工程类 地理 电气工程
作者
Lingwei Zheng,Ran Su,Xinyu Sun,Siqi Guo
出处
期刊:Energy [Elsevier]
卷期号:271: 127009-127009 被引量:14
标识
DOI:10.1016/j.energy.2023.127009
摘要

With photovoltaic (PV) penetration increasing, PV-output prediction has become a research hotspot. Due to the close correlation between PV-output fluctuation and weather conditions, PV-output prediction models often vary different weather types, while the historical/forecast weather types for modeling are mostly obtained from weather-service providers. However, weather-service providers generally have deficiencies in forecast accuracy, spatio-temporal resolution, and investment/operating costs. Based on the above, this paper changes the current acquisition way of the weather types, and proposes a framework of reversely determining weather types from historical PV-output data. First, the symbol-sequence histograms (SSH) are used to describe the PV-output volatility in a coarse-grained manner. Then, the SSHs are partitionally clustered and a classification rule for weather-types is proposed to label the historical weather types. Next, considering the chaotic characteristics of PV output, a prediction method combining phase-space reconstruction with an extremely learning machine based single-layer forward net is developed to predict the SSH. Finally, the day-ahead weather type is forecasted. Simulations were implemented on the weather-type classification and forecasting using a campus PV-system in East China. The PV-output prediction results show that, compared with weather information from a weather-service supplier, 75-day mean errors are significantly reduced by 15.55% (MAPE) and 12.69% (rRMSE), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呦呦完成签到 ,获得积分10
1秒前
2秒前
2秒前
飞鸟完成签到,获得积分10
3秒前
randylch完成签到,获得积分10
3秒前
4秒前
6秒前
6秒前
综述白发布了新的文献求助10
6秒前
kk发布了新的文献求助80
7秒前
善良鱼哟完成签到,获得积分10
7秒前
调研昵称发布了新的文献求助10
7秒前
鳗鱼起眸发布了新的文献求助50
8秒前
8秒前
王谊讴完成签到,获得积分10
9秒前
金权富贵完成签到,获得积分20
11秒前
调研昵称发布了新的文献求助80
11秒前
11秒前
lvyan发布了新的文献求助10
11秒前
Owen应助你好CDY采纳,获得10
13秒前
陈早睡完成签到,获得积分10
13秒前
14秒前
pinksoo应助感性的送终采纳,获得10
15秒前
调研昵称发布了新的文献求助10
15秒前
15秒前
16秒前
慕雨倾欣完成签到,获得积分10
17秒前
17秒前
汛钥发布了新的文献求助10
17秒前
通达完成签到,获得积分10
18秒前
19秒前
菠萝谷波发布了新的文献求助10
19秒前
20秒前
传奇3应助综述白采纳,获得10
21秒前
23秒前
小马甲应助wei采纳,获得10
24秒前
研友_VZG7GZ应助熊熊熊采纳,获得10
24秒前
25秒前
26秒前
11发布了新的文献求助10
26秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
The Data Economy: Tools and Applications 1000
Diamonds: Properties, Synthesis and Applications 800
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3096435
求助须知:如何正确求助?哪些是违规求助? 2748408
关于积分的说明 7599570
捐赠科研通 2400094
什么是DOI,文献DOI怎么找? 1273377
科研通“疑难数据库(出版商)”最低求助积分说明 615726
版权声明 598973