Quantitative level determination of fixed restorations on panoramic radiographs using deep learning.

卷积神经网络 残差神经网络 人工智能 射线照相术 计算机科学 深度学习 全景片 模式识别(心理学) 口腔正畸科 医学 放射科
作者
Ahmet Esad Top,Sertaç Özdoğan,Mustafa Yeniad
出处
期刊:PubMed 卷期号:26 (4): 285-299
标识
DOI:10.3290/j.ijcd.b3840521
摘要

Although many studies in various fields employ deep learning models, only a few such studies exist in dental imaging. The present article aims to evaluate the effectiveness of convolutional neural network (CNN) algorithms for the detection and diagnosis of the quantitative level of dental restorations using panoramic radiographs by preparing a novel dataset.20,973 panoramic radiographs were used, all labeled into five distinct categories by three dental experts. AlexNet, VGG-16, and variants of ResNet models were trained with the dataset and evaluated for the classification task. Additionally, 10-fold cross-validation (ie, 9 folds were separated for training and 1 fold for validation) and data augmentation were carried out for all experiments.The most successful result was shown by ResNet-101, with an accuracy of 92.7%. Its macro-average AUC was also the highest, at 0.989. Other accuracy results obtained for the dataset were 75.5% for AlexNet, 85.0% for VGG-16, 92.1% for ResNet-18, 91.7% for ResNet-50, and 92.1% for InceptionResNet-v2.An accuracy of 92.7% is a very promising result for a computer-aided diagnostic system. This result proved that the system could assist dentists in providing supportive preliminary information from the moment a patient's first panoramic radiograph is taken. Furthermore, as the introduced dataset is powerful enough, it can be relabeled for different problems and used in different studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
等待世平完成签到,获得积分10
1秒前
Hollow完成签到,获得积分10
2秒前
友好寻琴应助贪玩的一曲采纳,获得10
2秒前
Creamai发布了新的文献求助30
2秒前
田様应助小汪采纳,获得10
3秒前
bkagyin应助东阳采纳,获得10
3秒前
3秒前
Miss完成签到,获得积分10
3秒前
学习完成签到,获得积分10
4秒前
4秒前
852发布了新的文献求助10
4秒前
ppy完成签到,获得积分10
5秒前
www发布了新的文献求助10
5秒前
在水一方应助lilililiy采纳,获得10
6秒前
randylch完成签到,获得积分10
8秒前
nickel发布了新的文献求助10
9秒前
香蕉觅云应助翟翟采纳,获得10
10秒前
星宿完成签到,获得积分10
12秒前
Dreamer完成签到,获得积分10
12秒前
gaobowang完成签到,获得积分10
12秒前
pan完成签到,获得积分10
13秒前
乐观的鸽子完成签到,获得积分10
14秒前
14秒前
乐观的凌兰完成签到 ,获得积分10
15秒前
www完成签到,获得积分10
16秒前
LK完成签到 ,获得积分10
17秒前
清秀小蘑菇完成签到,获得积分10
18秒前
桐桐应助sfxnxgu采纳,获得10
18秒前
ZDZ发布了新的文献求助10
20秒前
647完成签到,获得积分10
21秒前
可爱语堂完成签到,获得积分10
23秒前
fane完成签到,获得积分10
23秒前
ikun完成签到 ,获得积分10
23秒前
23秒前
24秒前
nickel完成签到,获得积分10
24秒前
FashionBoy应助冷艳薯片采纳,获得10
24秒前
问天应助lcc采纳,获得10
25秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140624
求助须知:如何正确求助?哪些是违规求助? 2791434
关于积分的说明 7798983
捐赠科研通 2447824
什么是DOI,文献DOI怎么找? 1302046
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194