Water Splitting Integrated with Self-Transfer Hydrogenolysis for Efficient Demethoxylation of Guaiacols to Phenols over the Ni/MgO Catalyst

氢解 催化作用 加氢脱氧 愈创木酚 化学 产量(工程) 水溶液 木质素 酚类 苯酚 双水相体系 化学工程 有机化学 选择性 无机化学 材料科学 冶金 工程类
作者
Xiaohong Ren,Qiang Qian,Zhuohua Sun,Ting Wei,Xiaoqiang Yu,Zeming Rong,Changzhi Li
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (7): 5247-5259 被引量:29
标识
DOI:10.1021/acscatal.4c00038
摘要

This work demonstrates the upgrading of lignin-derived monomers through a cascade demethoxylation, aqueous-phase reforming reaction, eliminating the need for external hydrogen supply. The core of this research lies in the use of neat water as both reaction medium and the hydrogen donor over a multifunctional Ni/MgO catalyst, which is responsible for water splitting, aqueous-phase reforming of in situ generated methanol, and selective cleavage of the C–O bond, finally establishing an efficient one-pot approach achieving a high yield of phenols. Reaction mechanism studies proved that the initial H* source came from water by its splitting on the surface of the Ni/MgO catalyst, which triggered the fracture of the aromatic ether bond to afford phenols and CH3O*. The subsequent aqueous-phase reforming of CH3O* and OH* generated more hydrogen and further accelerated the hydrodeoxygenation (HDO) process. A high conversion of 87.8% with a selectivity of 88.9% for phenol could be achieved at 190 °C from guaiacol. Thanks to the interesting water-splitting mechanisms and strong metal–support interaction (SMSI), Ni/MgO exhibited significantly enhanced stability compared to the previously reported nanoporous Ni catalysts. Further, with real lignin as the substrate, 16.3 wt % combined yield of phenol and 4-methylphenol could be acquired under optimized conditions. Overall, this "H2-free" approach offers a promising alternative to conventional biorefinery processes, addressing the challenges of hydrogen sourcing and economic feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
young完成签到,获得积分10
2秒前
yznfly举报一饮吞江河求助涉嫌违规
2秒前
2秒前
Windsea发布了新的文献求助10
2秒前
2秒前
2秒前
王昭发布了新的文献求助10
3秒前
huhu发布了新的文献求助10
4秒前
清爽映之完成签到,获得积分10
5秒前
禹宛白发布了新的文献求助10
5秒前
传奇3应助DTS采纳,获得10
5秒前
hhhyyyy完成签到,获得积分10
5秒前
笨蛋搞笑女完成签到 ,获得积分10
6秒前
NA完成签到,获得积分20
7秒前
WNL发布了新的文献求助10
7秒前
8秒前
研友_Lpawrn发布了新的文献求助20
9秒前
9秒前
10秒前
11秒前
11秒前
打打应助罗拉采纳,获得10
11秒前
毛万良完成签到,获得积分10
13秒前
冷曦完成签到,获得积分10
13秒前
哈哈Hank发布了新的文献求助10
13秒前
Cassiopeia完成签到,获得积分10
14秒前
14秒前
张小圆应助马力采纳,获得10
15秒前
Jasper应助十一采纳,获得10
15秒前
王王的苏完成签到,获得积分10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
材袅完成签到,获得积分10
17秒前
17秒前
真实的士萧完成签到,获得积分20
17秒前
李健应助虚心若山采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802