Semantic segmentation for multisource remote sensing images incorporating feature slice reconstruction and attention upsampling

增采样 特征(语言学) 分割 计算机科学 人工智能 计算机视觉 遥感 图像分割 模式识别(心理学) 地质学 图像(数学) 哲学 语言学
作者
Fengkai Lang,Ming Zhang,Jinqi Zhao,Nanshan Zheng,Hongtao Shi
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (8): 2761-2785
标识
DOI:10.1080/01431161.2024.2338232
摘要

Multisource remote sensing images have rich features and high interpretability and are widely employed in many applications. However, highly unbalanced category distributions and complex backgrounds have created some difficulties in the application of remote sensing image semantic segmentation tasks, such as low accuracy of small target segmentation and inaccurate edge extraction. To solve these problems, in this paper, a feature map segmentation reconstruction module and an attention upsampling module are proposed. In the encoder part, the input feature map is equally segmented, and the segmented feature map is enlarged to effectively improve the small target feature information expression ability in the model. In the decoder part, the key segmentation and location information of shallow features are obtained using the global view. The deep semantic information and shallow spatial location information are fully combined to achieve a more refined upsampling operation. In addition, the attention mechanism of the spatial and channel squeeze and excitation block (scSE) is applied to pay more attention to important features and to suppress irrelevant background and redundant information. To verify the effectiveness of the proposed method, the WHU-OPT-SAR dataset and six state-of-the-art algorithms are utilized in comparative experiments. The experimental results show that our model has demonstrated the best performance and low computational complexity. With only approximately half the floating-point operation count and the number of model parameters of the MCANet model, which is specially designed for the dataset, our model surpasses MCANet by 1.52% and 1.53% in terms of mean intersection over union (mIoU) and F1 score, respectively. In particular, for small object regions such as roads and other categories, compared to the baseline model, the IoU and F1 score of our model are improved by 5.27% and 3.99% and by 5.68% and 5.65%, respectively. These results demonstrate the superior performance of our model in terms of accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gun2022发布了新的文献求助10
1秒前
蜗牛撵大象完成签到,获得积分10
1秒前
张张完成签到 ,获得积分20
2秒前
黄bb应助sensen采纳,获得10
2秒前
张大帅6666发布了新的文献求助10
3秒前
4秒前
田様应助风巽雷震之歌采纳,获得10
5秒前
6秒前
树叶有专攻完成签到,获得积分10
6秒前
小何爱学习完成签到,获得积分10
6秒前
zho应助cuarzn采纳,获得10
7秒前
8秒前
9秒前
领导范儿应助乐生采纳,获得10
10秒前
早晨发布了新的文献求助10
11秒前
科研通AI5应助平淡小丸子采纳,获得10
11秒前
PGS完成签到,获得积分10
11秒前
研友_nVNBVn发布了新的文献求助10
12秒前
JayceH关注了科研通微信公众号
14秒前
多睡会儿发布了新的文献求助10
14秒前
张大帅6666完成签到,获得积分10
14秒前
玥越发布了新的文献求助10
15秒前
16秒前
NexusExplorer应助GentleFade采纳,获得10
16秒前
17秒前
小蘑菇应助虚幻采枫采纳,获得10
18秒前
19秒前
华仔应助和谐诗柳采纳,获得10
21秒前
Kakaa完成签到 ,获得积分10
21秒前
华仔应助grant采纳,获得10
21秒前
七只狐狸发布了新的文献求助10
21秒前
CC发布了新的文献求助30
21秒前
CCC发布了新的文献求助10
22秒前
早晨完成签到,获得积分10
22秒前
CipherSage应助学术蟑螂采纳,获得10
23秒前
阿狸完成签到,获得积分10
23秒前
芒果好高完成签到,获得积分10
25秒前
xinmindeng发布了新的文献求助10
26秒前
安静的板凳完成签到,获得积分10
27秒前
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753107
求助须知:如何正确求助?哪些是违规求助? 3296635
关于积分的说明 10094955
捐赠科研通 3011433
什么是DOI,文献DOI怎么找? 1653764
邀请新用户注册赠送积分活动 788444
科研通“疑难数据库(出版商)”最低求助积分说明 752832