Persistent Luminescence Lifetime-Based Near-Infrared Nanoplatform via Deep Learning for High-Fidelity Biosensing of Hypochlorite

化学 发光 生物传感器 次氯酸盐 高保真 纳米技术 持续发光 红外线的 光电子学 光学 无机化学 生物化学 物理 材料科学 热释光 电气工程 工程类
作者
Feng Yang,Xuemei Yang,Qianli Rao,Lichun Zhang,Yingying Su,Yi Lv
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c00899
摘要

In light of deep tissue penetration and ultralow background, near-infrared (NIR) persistent luminescence (PersL) bioprobes have become powerful tools for bioapplications. However, the inhomogeneous signal attenuation may significantly limit its application for precise biosensing owing to tissue absorption and scattering. In this work, a PersL lifetime-based nanoplatform via deep learning was proposed for high-fidelity bioimaging and biosensing in vivo. The persistent luminescence imaging network (PLI-Net), which consisted of a 3D-deep convolutional neural network (3D-CNN) and the PersL imaging system, was logically constructed to accurately extract the lifetime feature from the profile of PersL intensity-based decay images. Significantly, the NIR PersL nanomaterials represented by Zn1+xGa2–2xSnxO4: 0.4 % Cr (ZGSO) were precisely adjusted over their lifetime, enabling the PersL lifetime-based imaging with high-contrast signals. Inspired by the adjustable and reliable PersL lifetime imaging of ZGSO NPs, a proof-of-concept PersL nanoplatform was further developed and showed exceptional analytical performance for hypochlorite detection via a luminescence resonance energy transfer process. Remarkably, on the merits of the dependable and anti-interference PersL lifetimes, this PersL lifetime-based nanoprobe provided highly sensitive and accurate imaging of both endogenous and exogenous hypochlorite. This breakthrough opened up a new way for the development of high-fidelity biosensing in complex matrix systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫驳发布了新的文献求助10
刚刚
轻松的贞完成签到,获得积分10
1秒前
李健应助balzacsun采纳,获得10
2秒前
轻松的悟空完成签到 ,获得积分10
4秒前
susan完成签到,获得积分10
5秒前
0029完成签到,获得积分10
7秒前
Aki完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
10秒前
LXR完成签到,获得积分10
12秒前
thchiang发布了新的文献求助10
13秒前
李健应助北城采纳,获得10
13秒前
WDK发布了新的文献求助10
13秒前
14秒前
轻松的贞发布了新的文献求助10
14秒前
医学生Mavis完成签到,获得积分10
16秒前
nextconnie完成签到,获得积分10
16秒前
汉堡包应助yyj采纳,获得10
17秒前
zqh740发布了新的文献求助30
18秒前
19秒前
NexusExplorer应助pharmstudent采纳,获得10
20秒前
熊遇蜜完成签到,获得积分10
22秒前
panzer完成签到,获得积分10
23秒前
24秒前
lyt发布了新的文献求助10
25秒前
六月毕业关注了科研通微信公众号
26秒前
petrichor应助程程采纳,获得10
27秒前
圆儿完成签到 ,获得积分10
27秒前
潇洒的灵萱完成签到,获得积分10
27秒前
27秒前
27秒前
Toooo完成签到,获得积分10
28秒前
zqh740完成签到,获得积分10
28秒前
科研通AI5应助thchiang采纳,获得10
28秒前
lizzzzzz完成签到,获得积分10
29秒前
yyj发布了新的文献求助10
29秒前
请和我吃饭完成签到,获得积分10
30秒前
北城发布了新的文献求助10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824