Identification of MACC1 as a potential biomarker for pulmonary arterial hypertension based on bioinformatics and machine learning

生物标志物 鉴定(生物学) 肺动脉高压 医学 计算机科学 慢性血栓栓塞性肺高压 机器学习 生物信息学 人工智能 心脏病学 计算生物学 化学 生物 生物化学 植物
作者
Xinyi Zhou,Benhui Liang,Wenchao Lin,Lihuang Zha
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108372-108372 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108372
摘要

Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by abnormal early activation of pulmonary arterial smooth muscle cells (PASMCs), yet the underlying mechanisms remain to be elucidated. Normal and PAH gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database and analyzed using gene set enrichment analysis (GSEA) to uncover the underlying mechanisms. Weighted gene co-expression network analysis (WGCNA) and machine learning methods were deployed to further filter hub genes. A number of immune infiltration analysis methods were applied to explore the immune landscape of PAH. Enzyme-linked immunosorbent assay (ELISA) was employed to compare MACC1 levels between PAH and normal subjects. The important role of MACC1 in the progression of PAH was verified through Western blot and real-time qPCR, among others. 39 up-regulated and 7 down-regulated genes were identified by 'limma' and 'RRA' packages. WGCNA and machine learning further narrowed down the list to 4 hub genes, with MACC1 showing strong diagnostic capacity. In vivo and in vitro experiments revealed that MACC1 was highsly associated with malignant features of PASMCs in PAH. These findings suggest that targeting MACC1 may offer a promising therapeutic strategy for treating PAH, and further clinical studies are warranted to evaluate its efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111111111111111完成签到,获得积分10
刚刚
1秒前
2秒前
qqqqgc发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI5应助CHAosLoopy采纳,获得30
2秒前
白刀发布了新的文献求助10
2秒前
乐乐应助重要钥匙采纳,获得30
3秒前
WHY发布了新的文献求助10
3秒前
恋雅颖月发布了新的文献求助10
4秒前
4秒前
勤恳海雪完成签到,获得积分10
4秒前
CipherSage应助栗子鱼采纳,获得10
4秒前
lmx发布了新的文献求助10
4秒前
hsadu完成签到,获得积分10
4秒前
4秒前
葱油面发布了新的文献求助10
4秒前
梁婷发布了新的文献求助10
5秒前
5秒前
5秒前
yoyo发布了新的文献求助10
6秒前
丘比特应助刘潞敏采纳,获得10
6秒前
科研通AI5应助温柔的迎荷采纳,获得10
7秒前
内向镜子发布了新的文献求助10
7秒前
Hello应助玉于成采纳,获得10
7秒前
希望天下0贩的0应助申申采纳,获得10
7秒前
勤恳海雪发布了新的文献求助10
7秒前
八位元完成签到,获得积分10
7秒前
qqqqgc完成签到,获得积分20
7秒前
华仔应助xl1721采纳,获得10
8秒前
科研通AI2S应助123采纳,获得10
8秒前
9秒前
9秒前
苹果诗珊完成签到,获得积分10
9秒前
杨破玉发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748428
求助须知:如何正确求助?哪些是违规求助? 3291391
关于积分的说明 10072942
捐赠科研通 3007152
什么是DOI,文献DOI怎么找? 1651507
邀请新用户注册赠送积分活动 786406
科研通“疑难数据库(出版商)”最低求助积分说明 751719