Multi-center dose prediction using attention-aware deep learning algorithm based on transformers for cervical cancer radiotherapy

医学 宫颈癌 放射治疗 医学物理学 肿瘤科 算法 人工智能 内科学 癌症 计算机科学
作者
Zhe Wu,Xiaobin Jia,Liming Lu,Cheng Xu,Ya Pang,Shengxian Peng,Mujun Liu,Yiwei Wu
出处
期刊:Clinical Oncology [Elsevier]
标识
DOI:10.1016/j.clon.2024.03.022
摘要

Abstract

Aims

Accurate dose delivery is crucial for cervical cancer volumetric modulated arc therapy (VMAT). We aimed to develop a robust deep learning (DL) algorithm for fast and accurate dose prediction of cervical cancer VMAT in multi-center datasets and then explore the feasibility of the DL algorithm to endometrial cancer VMAT with different prescriptions.

Materials and methods

We proposed the AtTranNet algorithm for 3D dose prediction. A total of 367 cervical patients were enrolled in this study. 322 cervical patients from 3 centers were randomly divided into 70%, 10%, 20% as training, validation, testing sets. 45 cervical patients from another center were used as external testing. Moreover, 70 patients of endometrial cancer with different prescriptions were further used to test the model. Prediction precision was evaluated by dosimetric difference, dose map and dose volume histogram metrics.

Results

The prediction results were all clinically acceptable. The mean absolute error within the body in internal testing were 0.66±0.63%. The maximum |δD| for PTV was observed in D98, which is 1.24 ± 2.73 Gy. The maximum |δD| for OARs was observed in Dmean of bladder, which is 4.79 ±3.14 Gy. The maximum |δV| were observed in V40 of pelvic bones, which is 4.77±4.48 %.

Conclusion

AtTranNet showed the feasibility and reasonable accuracy in the dose prediction for cervical cancer in multi-center. The model can also be generalized for endometrial cancer with different prescriptions without any transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心想事橙完成签到,获得积分10
刚刚
淡然的智宸完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助Bambi采纳,获得30
2秒前
3秒前
3秒前
99完成签到,获得积分10
3秒前
兮颜发布了新的文献求助10
3秒前
3秒前
Solar energy发布了新的文献求助10
4秒前
nanalalal完成签到,获得积分10
4秒前
4秒前
4秒前
Orange应助乐正映萱采纳,获得10
4秒前
namk发布了新的文献求助30
5秒前
Keylor完成签到,获得积分10
5秒前
林悦涵完成签到,获得积分10
6秒前
安静的幼旋完成签到,获得积分10
6秒前
6秒前
6秒前
蟹浦肉完成签到,获得积分10
6秒前
TsutsumiRyuu完成签到,获得积分10
7秒前
7秒前
田様应助肥鱼不会飞采纳,获得10
7秒前
仁爱水之发布了新的文献求助10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
17应助科研通管家采纳,获得10
8秒前
dzbb应助科研通管家采纳,获得10
8秒前
najibveto应助科研通管家采纳,获得10
8秒前
赵赵a应助科研通管家采纳,获得20
8秒前
田様应助科研通管家采纳,获得10
8秒前
SciGPT应助lsx采纳,获得10
9秒前
酷波er应助jimmy采纳,获得10
9秒前
xiaofei666应助科研通管家采纳,获得30
9秒前
Keylor发布了新的文献求助10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
曲奇饼干应助科研通管家采纳,获得10
9秒前
najibveto应助科研通管家采纳,获得10
9秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919