Multi-center Dose Prediction Using Attention-aware Deep learning Algorithm Based on Transformers for Cervical Cancer Radiotherapy

医学 宫颈癌 放射治疗 医学物理学 机器学习 算法 人工智能 内科学 放射科 癌症 计算机科学
作者
Zhe Wu,Xiaoyue Jia,Lin Lü,Chenxi Xu,Yu Pang,Silong Peng,Mujun Liu,Yi Wu
出处
期刊:Clinical Oncology [Elsevier]
卷期号:36 (7): e209-e223 被引量:2
标识
DOI:10.1016/j.clon.2024.03.022
摘要

Abstract

Aims

Accurate dose delivery is crucial for cervical cancer volumetric modulated arc therapy (VMAT). We aimed to develop a robust deep learning (DL) algorithm for fast and accurate dose prediction of cervical cancer VMAT in multi-center datasets and then explore the feasibility of the DL algorithm to endometrial cancer VMAT with different prescriptions.

Materials and methods

We proposed the AtTranNet algorithm for 3D dose prediction. A total of 367 cervical patients were enrolled in this study. 322 cervical patients from 3 centers were randomly divided into 70%, 10%, 20% as training, validation, testing sets. 45 cervical patients from another center were used as external testing. Moreover, 70 patients of endometrial cancer with different prescriptions were further used to test the model. Prediction precision was evaluated by dosimetric difference, dose map and dose volume histogram metrics.

Results

The prediction results were all clinically acceptable. The mean absolute error within the body in internal testing were 0.66±0.63%. The maximum |δD| for PTV was observed in D98, which is 1.24 ± 2.73 Gy. The maximum |δD| for OARs was observed in Dmean of bladder, which is 4.79 ±3.14 Gy. The maximum |δV| were observed in V40 of pelvic bones, which is 4.77±4.48 %.

Conclusion

AtTranNet showed the feasibility and reasonable accuracy in the dose prediction for cervical cancer in multi-center. The model can also be generalized for endometrial cancer with different prescriptions without any transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫的雨柏完成签到,获得积分10
刚刚
英俊冰岚完成签到 ,获得积分10
2秒前
spicyfish完成签到,获得积分10
2秒前
木雨亦潇潇完成签到,获得积分10
2秒前
HopeLee完成签到,获得积分10
2秒前
livra1058完成签到,获得积分10
3秒前
DrPika完成签到,获得积分10
3秒前
科目三应助shouyu29采纳,获得10
4秒前
TiY完成签到 ,获得积分10
4秒前
4秒前
maxthon完成签到,获得积分10
5秒前
5秒前
阳光的易真完成签到,获得积分10
6秒前
不重名完成签到 ,获得积分10
8秒前
爱学习的马邓邓完成签到 ,获得积分10
10秒前
iuhgnor完成签到,获得积分0
10秒前
饮千欲完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
田様应助无奈的书琴采纳,获得10
16秒前
391X小king发布了新的文献求助10
20秒前
牛仔完成签到 ,获得积分10
20秒前
饱满芷卉完成签到,获得积分10
21秒前
李爱国应助Wang采纳,获得10
25秒前
忧郁凌波完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
大个应助maple采纳,获得10
27秒前
凌儿响叮当完成签到 ,获得积分10
30秒前
仲大船完成签到,获得积分10
31秒前
31秒前
宁123完成签到 ,获得积分10
31秒前
喵喵徐完成签到 ,获得积分10
32秒前
112222完成签到 ,获得积分10
32秒前
南瓜豆腐完成签到 ,获得积分10
35秒前
无心的星月完成签到 ,获得积分10
37秒前
山复尔尔完成签到 ,获得积分10
41秒前
sora完成签到,获得积分10
42秒前
Lucas应助akanenn999采纳,获得10
43秒前
殷勤的凝海完成签到 ,获得积分10
45秒前
张张张xxx完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651424
求助须知:如何正确求助?哪些是违规求助? 4784822
关于积分的说明 15053799
捐赠科研通 4810090
什么是DOI,文献DOI怎么找? 2572957
邀请新用户注册赠送积分活动 1528830
关于科研通互助平台的介绍 1487848