已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-center dose prediction using attention-aware deep learning algorithm based on transformers for cervical cancer radiotherapy

医学 宫颈癌 放射治疗 医学物理学 肿瘤科 算法 人工智能 内科学 癌症 计算机科学
作者
Zhe Wu,Xiaobin Jia,Liming Lu,Cheng Xu,Ya Pang,Shengxian Peng,Mujun Liu,Yiwei Wu
出处
期刊:Clinical Oncology [Elsevier BV]
标识
DOI:10.1016/j.clon.2024.03.022
摘要

Abstract

Aims

Accurate dose delivery is crucial for cervical cancer volumetric modulated arc therapy (VMAT). We aimed to develop a robust deep learning (DL) algorithm for fast and accurate dose prediction of cervical cancer VMAT in multi-center datasets and then explore the feasibility of the DL algorithm to endometrial cancer VMAT with different prescriptions.

Materials and methods

We proposed the AtTranNet algorithm for 3D dose prediction. A total of 367 cervical patients were enrolled in this study. 322 cervical patients from 3 centers were randomly divided into 70%, 10%, 20% as training, validation, testing sets. 45 cervical patients from another center were used as external testing. Moreover, 70 patients of endometrial cancer with different prescriptions were further used to test the model. Prediction precision was evaluated by dosimetric difference, dose map and dose volume histogram metrics.

Results

The prediction results were all clinically acceptable. The mean absolute error within the body in internal testing were 0.66±0.63%. The maximum |δD| for PTV was observed in D98, which is 1.24 ± 2.73 Gy. The maximum |δD| for OARs was observed in Dmean of bladder, which is 4.79 ±3.14 Gy. The maximum |δV| were observed in V40 of pelvic bones, which is 4.77±4.48 %.

Conclusion

AtTranNet showed the feasibility and reasonable accuracy in the dose prediction for cervical cancer in multi-center. The model can also be generalized for endometrial cancer with different prescriptions without any transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CNY完成签到 ,获得积分10
刚刚
kento完成签到,获得积分0
1秒前
2秒前
嘿嘿发布了新的文献求助30
2秒前
2秒前
112233完成签到,获得积分10
3秒前
今年要发sci应助孤独箴言采纳,获得10
4秒前
安静的棉花糖完成签到 ,获得积分10
5秒前
112233发布了新的文献求助10
7秒前
lucky22完成签到 ,获得积分10
7秒前
8秒前
土豪的摩托完成签到 ,获得积分10
8秒前
小程同学发布了新的文献求助10
13秒前
凡平完成签到,获得积分10
15秒前
刘天宇完成签到 ,获得积分10
20秒前
goalkeeper完成签到,获得积分20
22秒前
renee_yok完成签到 ,获得积分10
26秒前
清樾完成签到 ,获得积分10
28秒前
29秒前
短短急个球完成签到,获得积分10
33秒前
LMX完成签到 ,获得积分10
34秒前
所所应助Corn_Dog采纳,获得10
35秒前
tt完成签到 ,获得积分10
35秒前
医疗废物专用车乘客完成签到,获得积分10
41秒前
苏雅霏完成签到 ,获得积分10
42秒前
啦啦啦完成签到 ,获得积分10
43秒前
43秒前
Corn_Dog发布了新的文献求助10
46秒前
王菲发布了新的文献求助10
47秒前
LQ完成签到 ,获得积分10
48秒前
穿云小蓝鲸完成签到,获得积分10
48秒前
慕玖淇完成签到 ,获得积分10
50秒前
隐形曼青应助几两采纳,获得10
51秒前
53秒前
goalkeeper发布了新的文献求助50
55秒前
思垢完成签到,获得积分10
55秒前
56秒前
黯然完成签到 ,获得积分10
56秒前
56秒前
57秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963143
求助须知:如何正确求助?哪些是违规求助? 3509015
关于积分的说明 11144838
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873118
科研通“疑难数据库(出版商)”最低求助积分说明 803621