Multi-center Dose Prediction Using Attention-aware Deep learning Algorithm Based on Transformers for Cervical Cancer Radiotherapy

医学 宫颈癌 放射治疗 医学物理学 机器学习 算法 人工智能 内科学 放射科 癌症 计算机科学
作者
Zhe Wu,Xiaoyue Jia,Lin Lü,Chenxi Xu,Yu Pang,Silong Peng,Mujun Liu,Yi Wu
出处
期刊:Clinical Oncology [Elsevier]
卷期号:36 (7): e209-e223 被引量:2
标识
DOI:10.1016/j.clon.2024.03.022
摘要

Abstract

Aims

Accurate dose delivery is crucial for cervical cancer volumetric modulated arc therapy (VMAT). We aimed to develop a robust deep learning (DL) algorithm for fast and accurate dose prediction of cervical cancer VMAT in multi-center datasets and then explore the feasibility of the DL algorithm to endometrial cancer VMAT with different prescriptions.

Materials and methods

We proposed the AtTranNet algorithm for 3D dose prediction. A total of 367 cervical patients were enrolled in this study. 322 cervical patients from 3 centers were randomly divided into 70%, 10%, 20% as training, validation, testing sets. 45 cervical patients from another center were used as external testing. Moreover, 70 patients of endometrial cancer with different prescriptions were further used to test the model. Prediction precision was evaluated by dosimetric difference, dose map and dose volume histogram metrics.

Results

The prediction results were all clinically acceptable. The mean absolute error within the body in internal testing were 0.66±0.63%. The maximum |δD| for PTV was observed in D98, which is 1.24 ± 2.73 Gy. The maximum |δD| for OARs was observed in Dmean of bladder, which is 4.79 ±3.14 Gy. The maximum |δV| were observed in V40 of pelvic bones, which is 4.77±4.48 %.

Conclusion

AtTranNet showed the feasibility and reasonable accuracy in the dose prediction for cervical cancer in multi-center. The model can also be generalized for endometrial cancer with different prescriptions without any transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
刚刚
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
林也应助KKKZ采纳,获得10
刚刚
小Z完成签到,获得积分10
刚刚
优美紫槐应助科研通管家采纳,获得10
刚刚
善学以致用应助fenggggg采纳,获得10
刚刚
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
YLR发布了新的文献求助10
1秒前
Skilixta完成签到,获得积分10
1秒前
慕青应助认真科研采纳,获得10
2秒前
研友_VZG7GZ应助笑点低疾采纳,获得10
2秒前
MQ完成签到,获得积分10
2秒前
zero桥完成签到,获得积分10
2秒前
柠檬陈完成签到,获得积分10
3秒前
3秒前
呆桃完成签到,获得积分10
3秒前
3秒前
3秒前
大个应助aaaaa采纳,获得10
4秒前
4秒前
哈哈哈完成签到,获得积分10
4秒前
关关过完成签到,获得积分0
4秒前
shong发布了新的文献求助10
4秒前
爱笑完成签到,获得积分10
4秒前
5秒前
流云发布了新的文献求助10
5秒前
111111完成签到,获得积分10
5秒前
充电宝应助风中的天菱采纳,获得10
5秒前
小鱼儿完成签到,获得积分10
5秒前
wl完成签到 ,获得积分10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297