Prediction of O and OH Adsorption on Transition Metal Oxide Surfaces from Bulk Descriptors

过渡金属 吸附 氧化物 密度泛函理论 催化作用 粘结长度 化学物理 金属 材料科学 粘结强度 计算化学 化学 物理化学 分子 有机化学 图层(电子) 胶粘剂
作者
Benjamin M. Comer,Neha Bothra,Jaclyn R. Lunger,Frank Abild‐Pedersen,Michal Bajdich,Kirsten T. Winther
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (7): 5286-5296 被引量:12
标识
DOI:10.1021/acscatal.4c00111
摘要

In the search for stable and active catalysts, density functional theory and machine learning-based models can accelerate the screening of materials. While stability is conveniently addressed on the bulk level of computation, the modeling of catalytic activity requires expensive surface simulations. In this work, we develop models for the surface adsorption energy of O and OH intermediates across a consistent and extensive data set of pure transition metal oxide surfaces. We show that adsorption energies across metal oxidation states of +2 to +6 are well captured from the metal–oxygen bond strength extracted from the bulk level calculation. Specifically, we calculate the integrated crystal orbital Hamiltonian population (ICOHP) of the metal–oxygen bond in the bulk oxide and employ a simple normalization scheme to obtain a strong correlation with the adsorption energetics. By combining our ICOHP descriptor with non-DFT features in a Gaussian Process regression (GPR) model, we achieve a high model accuracy with mean absolute errors of 0.166 and 0.219 eV for OH and O adsorption, respectively. By targeting the adsorption energy difference of the OH–OH adsorption with our GPR model, we predict the oxygen evolution reaction activity from bulk descriptors only. Furthermore, we utilize the strong correlation between the COHP and metal–oxygen bond lengths to rapidly predict the adsorption energetics and catalytic activity from the optimized bulk geometry. Our approach can enable an efficient search for active catalysts by eliminating the need for surface calculations in the initial screening phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暗月青影完成签到,获得积分10
刚刚
imagine完成签到,获得积分10
2秒前
4秒前
任性的向薇完成签到,获得积分10
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
NICAI应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
Ava应助科研通管家采纳,获得20
7秒前
ding应助科研通管家采纳,获得10
7秒前
小葵花完成签到 ,获得积分10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
拼搏应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
小新应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Verity应助科研通管家采纳,获得10
8秒前
小新应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
10秒前
韩涵完成签到 ,获得积分10
12秒前
13秒前
adoudoo完成签到 ,获得积分10
14秒前
Jodie发布了新的文献求助10
18秒前
GaoChenxi完成签到 ,获得积分10
18秒前
大芳儿完成签到,获得积分10
21秒前
shuide完成签到,获得积分20
22秒前
深情安青应助莉莉子采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555