亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of O and OH Adsorption on Transition Metal Oxide Surfaces from Bulk Descriptors

过渡金属 吸附 氧化物 密度泛函理论 催化作用 粘结长度 化学物理 金属 材料科学 粘结强度 计算化学 化学 物理化学 分子 有机化学 图层(电子) 胶粘剂
作者
Benjamin M. Comer,Neha Bothra,Jaclyn R. Lunger,Frank Abild‐Pedersen,Michal Bajdich,Kirsten T. Winther
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (7): 5286-5296 被引量:12
标识
DOI:10.1021/acscatal.4c00111
摘要

In the search for stable and active catalysts, density functional theory and machine learning-based models can accelerate the screening of materials. While stability is conveniently addressed on the bulk level of computation, the modeling of catalytic activity requires expensive surface simulations. In this work, we develop models for the surface adsorption energy of O and OH intermediates across a consistent and extensive data set of pure transition metal oxide surfaces. We show that adsorption energies across metal oxidation states of +2 to +6 are well captured from the metal–oxygen bond strength extracted from the bulk level calculation. Specifically, we calculate the integrated crystal orbital Hamiltonian population (ICOHP) of the metal–oxygen bond in the bulk oxide and employ a simple normalization scheme to obtain a strong correlation with the adsorption energetics. By combining our ICOHP descriptor with non-DFT features in a Gaussian Process regression (GPR) model, we achieve a high model accuracy with mean absolute errors of 0.166 and 0.219 eV for OH and O adsorption, respectively. By targeting the adsorption energy difference of the OH–OH adsorption with our GPR model, we predict the oxygen evolution reaction activity from bulk descriptors only. Furthermore, we utilize the strong correlation between the COHP and metal–oxygen bond lengths to rapidly predict the adsorption energetics and catalytic activity from the optimized bulk geometry. Our approach can enable an efficient search for active catalysts by eliminating the need for surface calculations in the initial screening phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助勤劳致富采纳,获得10
4秒前
af完成签到,获得积分10
10秒前
心灵美的大山完成签到,获得积分10
22秒前
Anoxra完成签到 ,获得积分10
44秒前
科目三应助xwz626采纳,获得30
44秒前
浮游应助科研通管家采纳,获得10
58秒前
浮游应助科研通管家采纳,获得10
58秒前
浮游应助科研通管家采纳,获得10
58秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
浮游应助科研通管家采纳,获得10
58秒前
田様应助丽优采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
丽优发布了新的文献求助10
1分钟前
1分钟前
xwz626发布了新的文献求助30
1分钟前
团子完成签到 ,获得积分10
1分钟前
浮游应助jj采纳,获得10
2分钟前
科目三应助心灵美的大山采纳,获得10
2分钟前
彭于晏应助丽优采纳,获得10
2分钟前
2分钟前
wpwp发布了新的文献求助10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
3分钟前
zack发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
炸鸡叔完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
zmjmj发布了新的文献求助10
4分钟前
xiongyh10完成签到,获得积分0
4分钟前
fx完成签到 ,获得积分10
4分钟前
汉堡包应助丽优采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426463
求助须知:如何正确求助?哪些是违规求助? 4540214
关于积分的说明 14171846
捐赠科研通 4457975
什么是DOI,文献DOI怎么找? 2444749
邀请新用户注册赠送积分活动 1435805
关于科研通互助平台的介绍 1413245