DDMM-Synth: A Denoising Diffusion Model for Cross-modal Medical Image Synthesis with Sparse-view Measurement Embedding

降噪 合成数据 计算机科学 嵌入 人工智能 投影(关系代数) 先验与后验 迭代重建 噪音(视频) 医学影像学 算法 模式识别(心理学) 图像(数学) 哲学 认识论
作者
Xiaoyue Li,Kai Shang,Gaoang Wang,Mark D. Butala
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2303.15770
摘要

Reducing the radiation dose in computed tomography (CT) is important to mitigate radiation-induced risks. One option is to employ a well-trained model to compensate for incomplete information and map sparse-view measurements to the CT reconstruction. However, reconstruction from sparsely sampled measurements is insufficient to uniquely characterize an object in CT, and a learned prior model may be inadequate for unencountered cases. Medical modal translation from magnetic resonance imaging (MRI) to CT is an alternative but may introduce incorrect information into the synthesized CT images in addition to the fact that there exists no explicit transformation describing their relationship. To address these issues, we propose a novel framework called the denoising diffusion model for medical image synthesis (DDMM-Synth) to close the performance gaps described above. This framework combines an MRI-guided diffusion model with a new CT measurement embedding reverse sampling scheme. Specifically, the null-space content of the one-step denoising result is refined by the MRI-guided data distribution prior, and its range-space component derived from an explicit operator matrix and the sparse-view CT measurements is directly integrated into the inference stage. DDMM-Synth can adjust the projection number of CT a posteriori for a particular clinical application and its modified version can even improve the results significantly for noisy cases. Our results show that DDMM-Synth outperforms other state-of-the-art supervised-learning-based baselines under fair experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shi完成签到,获得积分10
1秒前
Akim应助钟昊采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
佘余完成签到,获得积分10
2秒前
疯少可还行完成签到,获得积分20
3秒前
简单尔风发布了新的文献求助10
3秒前
云鲲完成签到,获得积分10
4秒前
liuyu完成签到,获得积分10
4秒前
4秒前
酷奔完成签到 ,获得积分10
4秒前
科研通AI6应助tz采纳,获得10
5秒前
Yjjjj完成签到 ,获得积分10
7秒前
大模型应助楚天正阔采纳,获得10
8秒前
科研通AI6应助漂亮萝莉采纳,获得10
8秒前
烟花应助莫宝采纳,获得10
8秒前
佘余发布了新的文献求助10
8秒前
9秒前
三玖完成签到,获得积分10
10秒前
123完成签到 ,获得积分10
10秒前
10秒前
qiuxiu完成签到,获得积分10
10秒前
10秒前
NexusExplorer应助寻123采纳,获得10
12秒前
蓝天发布了新的文献求助10
13秒前
摘星小喵完成签到,获得积分10
13秒前
充电宝应助呵呵呵呵采纳,获得10
13秒前
水波荡漾完成签到,获得积分10
15秒前
15秒前
16秒前
鸫鸫发布了新的文献求助10
16秒前
研友_P85D6Z完成签到,获得积分10
16秒前
李大龙发布了新的文献求助10
16秒前
17秒前
桐桐应助拉长的发夹采纳,获得10
17秒前
gongyh发布了新的文献求助10
17秒前
SSS完成签到,获得积分10
17秒前
sg发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652677
求助须知:如何正确求助?哪些是违规求助? 4787910
关于积分的说明 15061048
捐赠科研通 4811137
什么是DOI,文献DOI怎么找? 2573643
邀请新用户注册赠送积分活动 1529483
关于科研通互助平台的介绍 1488307