DDMM-Synth: A Denoising Diffusion Model for Cross-modal Medical Image Synthesis with Sparse-view Measurement Embedding

降噪 合成数据 计算机科学 嵌入 人工智能 投影(关系代数) 先验与后验 迭代重建 噪音(视频) 医学影像学 算法 模式识别(心理学) 图像(数学) 哲学 认识论
作者
Xiaoyue Li,Kai Shang,Gaoang Wang,Mark D. Butala
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2303.15770
摘要

Reducing the radiation dose in computed tomography (CT) is important to mitigate radiation-induced risks. One option is to employ a well-trained model to compensate for incomplete information and map sparse-view measurements to the CT reconstruction. However, reconstruction from sparsely sampled measurements is insufficient to uniquely characterize an object in CT, and a learned prior model may be inadequate for unencountered cases. Medical modal translation from magnetic resonance imaging (MRI) to CT is an alternative but may introduce incorrect information into the synthesized CT images in addition to the fact that there exists no explicit transformation describing their relationship. To address these issues, we propose a novel framework called the denoising diffusion model for medical image synthesis (DDMM-Synth) to close the performance gaps described above. This framework combines an MRI-guided diffusion model with a new CT measurement embedding reverse sampling scheme. Specifically, the null-space content of the one-step denoising result is refined by the MRI-guided data distribution prior, and its range-space component derived from an explicit operator matrix and the sparse-view CT measurements is directly integrated into the inference stage. DDMM-Synth can adjust the projection number of CT a posteriori for a particular clinical application and its modified version can even improve the results significantly for noisy cases. Our results show that DDMM-Synth outperforms other state-of-the-art supervised-learning-based baselines under fair experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
jing发布了新的文献求助10
1秒前
zhouxue完成签到,获得积分10
1秒前
三点水完成签到,获得积分10
2秒前
小二郎应助不爱吃柠檬采纳,获得30
2秒前
RilerT完成签到,获得积分10
2秒前
2秒前
Alanni完成签到 ,获得积分10
2秒前
2秒前
呆萌听兰完成签到,获得积分20
2秒前
超级山兰发布了新的文献求助10
2秒前
一定能毕业关注了科研通微信公众号
3秒前
嘿嘿嘿发布了新的文献求助10
3秒前
临妤完成签到,获得积分10
3秒前
Dali应助咸云采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
Hello应助Xiehf采纳,获得10
4秒前
芷云发布了新的文献求助10
4秒前
4秒前
支半雪发布了新的文献求助20
4秒前
半个彭于晏完成签到,获得积分10
4秒前
绿野仙踪发布了新的文献求助30
4秒前
房恩羽发布了新的文献求助10
5秒前
5秒前
张布朗发布了新的文献求助10
5秒前
5秒前
赘婿应助280采纳,获得10
6秒前
6秒前
7秒前
7秒前
兔兔大王发布了新的文献求助10
8秒前
xmyyy完成签到,获得积分10
8秒前
杜瑞豪完成签到,获得积分10
8秒前
yx发布了新的文献求助10
8秒前
无花果应助典雅雨寒采纳,获得10
8秒前
momo完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448