Estimating treatment effects for time-to-treatment antibiotic stewardship in sepsis

混淆 重症监护医学 观察研究 抗菌管理 医学 抗生素管理 可解释性 随机对照试验 管理(神学) 败血症 抗生素 可预测性 计算机科学 计量经济学 机器学习 抗生素耐药性 统计 内科学 数学 生物 政治 法学 政治学 微生物学
作者
Ruoqi Liu,Katherine M. Hunold,Jeffrey M. Caterino,Ping Zhang
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (4): 421-431 被引量:23
标识
DOI:10.1038/s42256-023-00638-0
摘要

Sepsis is a life-threatening condition with a high in-hospital mortality rate. The timing of antibiotic administration poses a critical problem for sepsis management. Existing work studying antibiotic timing either ignores the temporality of the observational data or the heterogeneity of the treatment effects. Here we propose a novel method (called T4) to estimate treatment effects for time-to-treatment antibiotic stewardship in sepsis. T4 estimates individual treatment effects by recurrently encoding temporal and static variables as potential confounders, and then decoding the outcomes under different treatment sequences. We propose mini-batch balancing matching that mimics the randomized controlled trial process to adjust the confounding. The model achieves interpretability through a global-level attention mechanism and a variable-level importance examination. Meanwhile, we equip T4 with an uncertainty quantification to help prevent overconfident recommendations. We demonstrate that T4 can identify effective treatment timing with estimated individual treatment effects for antibiotic stewardship on two real-world datasets. Moreover, comprehensive experiments on a synthetic dataset exhibit the outstanding performance of T4 compared with the state-of-the-art models on estimation of individual treatment effect. Sepsis treatment needs to be well timed to be effective and to avoid antibiotic resistance. Machine learning can help to predict optimal treatment timing, but confounders in the data hamper reliability. Liu and colleagues present a method to predict patient-specific treatment effects with increased accuracy, accompanied by an uncertainty estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
今后应助复杂的凌柏采纳,获得10
1秒前
2秒前
科研通AI6应助小九采纳,获得10
3秒前
pluto应助舒心迎蕾采纳,获得10
5秒前
Hang发布了新的文献求助10
5秒前
kaking完成签到,获得积分10
5秒前
周周完成签到,获得积分20
5秒前
哈哈哈哈哈关注了科研通微信公众号
5秒前
热心幻天发布了新的文献求助10
5秒前
李四发布了新的文献求助10
6秒前
6秒前
LV完成签到 ,获得积分10
7秒前
8秒前
剧院的饭桶完成签到,获得积分10
9秒前
9秒前
ketaman完成签到,获得积分10
9秒前
9秒前
gngxnh完成签到 ,获得积分10
10秒前
是榤啊完成签到,获得积分10
10秒前
hn完成签到,获得积分20
11秒前
11秒前
米虫完成签到,获得积分10
11秒前
李四完成签到,获得积分10
12秒前
yowar完成签到,获得积分10
13秒前
烟花应助刘西西采纳,获得10
13秒前
时舒发布了新的文献求助30
14秒前
可乐不加冰完成签到,获得积分10
14秒前
15秒前
15秒前
郭初一发布了新的文献求助20
15秒前
16秒前
优雅的小海豚完成签到,获得积分20
16秒前
慕青应助小正采纳,获得30
16秒前
顾矜应助潇洒的以柳采纳,获得10
17秒前
余闻问发布了新的文献求助10
17秒前
Terry完成签到,获得积分10
18秒前
尤则棋完成签到,获得积分20
18秒前
传奇3应助热心幻天采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593859
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811189
捐赠科研通 4645218
什么是DOI,文献DOI怎么找? 2534702
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469430