Learning to Upsample by Learning to Sample

计算机科学 增采样 失败 分割 人工智能 核(代数) 低延迟(资本市场) 延迟(音频) 深度学习 计算机工程 机器学习 并行计算 计算机网络 图像(数学) 电信 数学 组合数学
作者
Wenze Liu,Hao Lü,Hongtao Fu,Zhiguo Cao
标识
DOI:10.1109/iccv51070.2023.00554
摘要

We present DySample, an ultra-lightweight and effective dynamic upsampler. While impressive performance gains have been witnessed from recent kernel-based dynamic upsamplers such as CARAFE, FADE, and SAPA, they introduce much workload, mostly due to the time-consuming dynamic convolution and the additional sub-network used to generate dynamic kernels. Further, the need for high-res feature guidance of FADE and SAPA somehow limits their application scenarios. To address these concerns, we bypass dynamic convolution and formulate upsampling from the perspective of point sampling, which is more resource-efficient and can be easily implemented with the standard built-in function in PyTorch. We first showcase a naive design, and then demonstrate how to strengthen its upsampling behavior step by step towards our new upsampler, DySample. Compared with former kernel-based dynamic upsamplers, DySample requires no customized CUDA package and has much fewer parameters, FLOPs, GPU memory, and latency. Besides the light-weight characteristics, DySample outperforms other upsamplers across five dense prediction tasks, including semantic segmentation, object detection, instance segmentation, panoptic segmentation, and monocular depth estimation. Code is available at https://github.com/tiny-smart/dysample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
云鹏完成签到,获得积分10
2秒前
追寻冰淇淋应助morgenlefay采纳,获得10
3秒前
8989完成签到,获得积分10
4秒前
lijieyuan完成签到,获得积分10
4秒前
4秒前
6秒前
7秒前
CipherSage应助洋洋采纳,获得10
8秒前
文静千凡发布了新的文献求助10
9秒前
9秒前
打打应助mmm采纳,获得10
12秒前
奋斗的绝悟完成签到 ,获得积分10
13秒前
14秒前
渣渣XM完成签到,获得积分10
15秒前
DamonFri完成签到,获得积分10
15秒前
要减肥安南完成签到,获得积分10
16秒前
UPUP0707完成签到,获得积分10
16秒前
jnfy发布了新的文献求助10
17秒前
17秒前
舒畅完成签到,获得积分10
19秒前
21秒前
21秒前
大真人发布了新的文献求助10
22秒前
科研通AI2S应助可爱的柜子采纳,获得10
22秒前
CodeCraft应助suansuan采纳,获得10
22秒前
健忘的沛蓝完成签到 ,获得积分10
22秒前
23秒前
24秒前
文城完成签到 ,获得积分10
24秒前
why完成签到,获得积分10
24秒前
额威风完成签到,获得积分10
24秒前
blue发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
zrc完成签到 ,获得积分10
26秒前
27秒前
淀粉肠发布了新的文献求助10
29秒前
大真人完成签到,获得积分10
29秒前
30秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952525
求助须知:如何正确求助?哪些是违规求助? 3497889
关于积分的说明 11089301
捐赠科研通 3228428
什么是DOI,文献DOI怎么找? 1784906
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309