FedMoE: Data-Level Personalization with Mixture of Experts for Model-Heterogeneous Personalized Federated Learning

个性化 计算机科学 联合学习 万维网 情报检索 数据科学 人工智能
作者
Liping Yi,Yu Han,Chao Ren,Heng Zhang,Gang Wang,Xiaoguang Liu,Xiaoxiao Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.01350
摘要

Federated learning (FL) is widely employed for collaborative training on decentralized data but faces challenges like data, system, and model heterogeneity. This prompted the emergency of model-heterogeneous personalized federated learning (MHPFL). However, concerns persist regarding data and model privacy, model performance, communication, and computational costs in current MHPFL methods. To tackle these concerns, we propose a novel model-heterogeneous personalized Federated learning algorithm (FedMoE) with the Mixture of Experts (MoE), renowned for enhancing large language models (LLMs). It assigns a shared homogeneous small feature extractor and a local gating network for each client's local heterogeneous large model. (1) During local training, the local heterogeneous model's feature extractor acts as a local expert for personalized feature (representation) extraction, while the shared homogeneous small feature extractor serves as a global expert for generalized feature extraction. The local gating network produces personalized weights for extracted representations from both experts on each data sample. The three models form a local heterogeneous MoE. The weighted mixed representation fuses global generalized and local personalized features and is processed by the local heterogeneous large model's header with personalized prediction information for output. The MoE and prediction header are updated synchronously. (2) The trained local homogeneous small feature extractors are sent to the server for cross-client information fusion via aggregation. Briefly, FedMoE first enhances local model personalization at a fine-grained data level while supporting model heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助王大锤采纳,获得10
刚刚
1秒前
nczpf2010完成签到,获得积分10
2秒前
杨奇定发布了新的文献求助10
2秒前
2秒前
汉堡包应助柠檬小橘子采纳,获得10
2秒前
3秒前
无情飞雪发布了新的文献求助10
3秒前
argwew发布了新的文献求助10
5秒前
lmj完成签到,获得积分10
5秒前
yyyyyyyyjt完成签到,获得积分20
6秒前
Ava应助姬松茸夫人采纳,获得10
6秒前
云墨发布了新的文献求助10
6秒前
我就在这等待完成签到,获得积分10
7秒前
科研副本发布了新的文献求助10
7秒前
8秒前
yyyyyyyyjt发布了新的文献求助10
9秒前
jiujieweizi完成签到 ,获得积分10
9秒前
辛勤雨泽发布了新的文献求助10
9秒前
CodeCraft应助冷静水池采纳,获得10
9秒前
luyong完成签到 ,获得积分10
11秒前
13秒前
王大锤发布了新的文献求助10
13秒前
科研通AI5应助森气采纳,获得10
14秒前
孙淳完成签到,获得积分10
15秒前
大模型应助nini采纳,获得10
15秒前
无情的宛儿完成签到,获得积分10
15秒前
15秒前
yiyiyiff发布了新的文献求助10
16秒前
科研通AI5应助xiaozeng采纳,获得10
17秒前
怕黑荠应助云上人采纳,获得10
17秒前
Eine发布了新的文献求助30
17秒前
18秒前
fxx完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
20秒前
端庄大船完成签到,获得积分10
21秒前
乐乐应助阿比盖尔采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560850
求助须知:如何正确求助?哪些是违规求助? 3134690
关于积分的说明 9408852
捐赠科研通 2834921
什么是DOI,文献DOI怎么找? 1558291
邀请新用户注册赠送积分活动 728047
科研通“疑难数据库(出版商)”最低求助积分说明 716678