Learned representation-guided diffusion models for large-image generation

计算机科学 人工智能 稳健性(进化) 忠诚 概化理论 编码 模式识别(心理学) 分类器(UML) 图像(数学) 数学 电信 生物化学 化学 统计 基因
作者
Alexandros Graikos,Srikar Yellapragada,Minh-Quan Le,Saarthak Kapse,Prateek Prasanna,Joel Saltz,Dimitris Samaras
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.07330
摘要

To synthesize high-fidelity samples, diffusion models typically require auxiliary data to guide the generation process. However, it is impractical to procure the painstaking patch-level annotation effort required in specialized domains like histopathology and satellite imagery; it is often performed by domain experts and involves hundreds of millions of patches. Modern-day self-supervised learning (SSL) representations encode rich semantic and visual information. In this paper, we posit that such representations are expressive enough to act as proxies to fine-grained human labels. We introduce a novel approach that trains diffusion models conditioned on embeddings from SSL. Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images. In addition, we construct larger images by assembling spatially consistent patches inferred from SSL embeddings, preserving long-range dependencies. Augmenting real data by generating variations of real images improves downstream classifier accuracy for patch-level and larger, image-scale classification tasks. Our models are effective even on datasets not encountered during training, demonstrating their robustness and generalizability. Generating images from learned embeddings is agnostic to the source of the embeddings. The SSL embeddings used to generate a large image can either be extracted from a reference image, or sampled from an auxiliary model conditioned on any related modality (e.g. class labels, text, genomic data). As proof of concept, we introduce the text-to-large image synthesis paradigm where we successfully synthesize large pathology and satellite images out of text descriptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木南完成签到,获得积分20
刚刚
刚刚
可靠的千凝完成签到 ,获得积分10
1秒前
look完成签到,获得积分10
3秒前
浩多多发布了新的文献求助10
4秒前
我是老大应助米奇采纳,获得10
4秒前
5秒前
5秒前
7秒前
日出发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
薛妖怪完成签到,获得积分10
11秒前
SciGPT应助skydreamerzmt采纳,获得10
11秒前
大个应助日出采纳,获得10
11秒前
ZZWWW发布了新的文献求助10
11秒前
饭勺小子发布了新的文献求助10
12秒前
西原的橙果完成签到,获得积分10
12秒前
13秒前
温以凡完成签到,获得积分10
14秒前
luohao完成签到,获得积分10
14秒前
16秒前
浩多多完成签到,获得积分10
16秒前
可靠橘子完成签到,获得积分10
17秒前
螃蟹医生发布了新的文献求助10
17秒前
18秒前
999发布了新的文献求助10
20秒前
啦啦啦发布了新的文献求助10
20秒前
21秒前
饭勺小子完成签到,获得积分10
21秒前
鄂成危发布了新的文献求助10
22秒前
螃蟹医生完成签到,获得积分10
22秒前
22秒前
24秒前
SS发布了新的文献求助10
24秒前
啦啦啦完成签到,获得积分20
26秒前
SciGPT应助junjie采纳,获得10
27秒前
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919