Stromatoporoids and extinctions: A review

地理 环境伦理学 历史 哲学
作者
Steve Kershaw,Juwan Jeon
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:: 104721-104721
标识
DOI:10.1016/j.earscirev.2024.104721
摘要

Stromatoporoids are common shallow marine hypercalcified sponges in two major episodes with distinctive skeletal architectures: 1) Palaeozoic: Ordovician to Late Devonian; and 2) Mesozoic: Late Triassic to Cretaceous and rare Cenozoic, but not confirmed in Permian and earlier Triassic strata. Stromatoporoids appeared in Early to Middle Ordovician strata, important in buildups from late Middle Ordovician metazoan expansions (part of the Great Ordovician Biodiversification Event). Throughout the Palaeozoic, some stromatoporoid taxa occur across several palaeocontinents, and, if they are the same biological taxa, presumably migrated as larvae across oceans. Palaeozoic stromatoporoids suffered 5 events of decline; Event 1): end-Ordovician Mass Extinction; surviving forms are typical Silurian taxa, marking change of abundance from labechiid to clathrodictyid forms. Event 2): late Silurian to Early Devonian contraction: stromatoporoids became scarce with low generic diversity, presumably related to global sea-level fall. Intra-Silurian extinction events principally affected conodonts and graptolites, associated with positive carbon isotope excursions, but not stromatoporoids, likely because of their shallow marine benthic habit, contrasting pelagic oceanic planktonic and nektonic fauna influenced by oceanographic changes. Stromatoporoid expansion to their late Early to Middle Devonian (Eifelian and Givetian) acme, forming a major Phanerozoic global reef system, was likely linked to global sea-level rise, when epeiric seas expanded, but followed by Event 3): end-Givetian extinction, possibly related to cooling; Event 4): Frasnian-Famennian (FF) extinction; and Event 5): end-Devonian (Hangenberg Event) extinction; 4 and 5 may be related to sea-level fall, cooling, anoxia and potentially, magmatism. The apparent stratigraphic gap between end-Devonian and Triassic stromatoporoids was not extinction of Palaeozoic stromatoporoids, because rare Carboniferous examples in England, Russia, USA and Japan prove survival in shallow marine environments. Prior interpretation that stromatoporoid-grade sponges lost ability to calcify is unlikely, because chaetetid hypercalcified sponges expanded and built Carboniferous reefs. Important is that skeletal architectures of stromatoporoid and chaetetid hypercalcified sponges are regarded as ‘grades of organisation’ of the skeleton, lacking phyletic value; living stromatoporoid- and chaetetid-grade sponges occur in the classes Demosponge and Calcarea based on their spicules. This implies that extinction of sponge taxa that just happened to have been stromatoporoid-grade hypercalcifiers may explain stromatoporoid loss in the end-Devonian, and may point to unpreserved crises in non-calcifying Porifera, noting poor sponge records in end-Devonian strata. Having also survived the end-Permian and end-Triassic extinctions, stromatoporoid-grade hypercalcification expanded again in the Jurassic, together with sphinctozoan and inozoan grades, and then survived the K-Pg extinction although stromatoporoid-grade sponges are rare after the Cretaceous, perhaps due to the large progressive sea-level fall of the Cenozoic and consequent loss of habitat. Stromatoporoids appear to be more abundant during calcite seas times, so there may be both an oceanographic chemical control on their development and a preservation bias towards calcite rather than aragonite mineralogy. Overall, the ability of sponges to hypercalcify was not lost throughout their Phanerozoic history; thus, stromatoporoids and other hypercalcified sponges are preserved evidence of the resilience of sponges to environmental change, in contrast other famous reef-building forms, such as tabulate and rugose corals, and rudist bivalves, which became extinct.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zzz采纳,获得10
1秒前
2秒前
XY发布了新的文献求助10
2秒前
可靠嘉懿完成签到,获得积分10
2秒前
3秒前
薇薇发布了新的文献求助10
3秒前
3秒前
豫章小菜花完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
4秒前
朴实山兰完成签到,获得积分10
5秒前
5秒前
7秒前
陆拾壹发布了新的文献求助10
8秒前
8秒前
wangwenzhe发布了新的文献求助10
9秒前
9秒前
zz发布了新的文献求助10
10秒前
11秒前
隐形曼青应助Puan采纳,获得10
12秒前
科研通AI5应助正宗采纳,获得10
12秒前
13秒前
wst发布了新的文献求助10
13秒前
科研通AI5应助W镪Y采纳,获得10
16秒前
田様应助青芒果采纳,获得10
16秒前
勤劳怜寒完成签到,获得积分10
16秒前
及川徹发布了新的文献求助10
17秒前
17秒前
陆拾壹完成签到,获得积分10
18秒前
sssss应助锟斤拷烫烫烫采纳,获得10
19秒前
20秒前
20秒前
Alyssa发布了新的文献求助10
21秒前
21秒前
科研通AI5应助chikaoyu采纳,获得10
22秒前
leeshho发布了新的文献求助30
22秒前
24秒前
夏鹿发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670801
求助须知:如何正确求助?哪些是违规求助? 3227675
关于积分的说明 9776795
捐赠科研通 2937868
什么是DOI,文献DOI怎么找? 1609663
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735928